Log in
Collaborative research with Tata Steel has delivered significant economic impact, maintaining leading-edge business performance with new functionally coated metal construction products carrying 40 year warranties, and research contributing to global competitiveness for Electrical Steels. In addition partner company performance through skilled people has been improved through the delivery of 61 highly trained doctoral level coatings leaders and technologists, the majority of whom are now running their own research groups or are director level technologists.
Public interest and engagement activity has focussed on the application of research techniques and in functional coatings for energy through the `Buildings as Powerstations' concept and `Materials Live' events.
This case study describes the creation and use of advanced simulation technology by international mining corporations to optimise high value metal recovery. The technology involved the development of advanced novel computational methods and software tools to model industrial scale heap leach processes for large scale industrial application at major mining operations. This focus on the development of optimised operational strategies has produced considerable economic benefits measured in the $multi-millions to industrial sponsors, including $58 million dollars in additional revenue for one multi-national corporation over one year following the adoption of engineered heaps based upon the advanced simulation tools from Swansea.
Research in materials characterisation at Swansea University has produced a deeper understanding of the mechanical behaviour of proprietary engine components, and the potential improvements that can be made. The research has provided a critical technological contribution to the manufacture of efficient and robust gas turbine engines, fundamentally supporting the declaration of safe working lives for critical rotating components, contributing to a significant reduction in specific fuel consumption, and enabling Rolls-Royce to maintain a 40% share of the global civil aviation market. The research has led to the creation of a profitable spin-out company (Swansea Materials Research & Testing Ltd - SMaRT) with an initial annual turnover of £1m.
In public perception, antimatter used to be associated with science fiction, but the creation and trapping of antihydrogen at CERN by the ATHENA and ALPHA Collaborations has sparked world-wide media interest in the real science of antimatter. Building on this, we started a campaign of public dissemination and education to promote and explain our work through media interviews, popular articles, and public lectures including a Welsh language component. We developed software simulators that have been used by school pupils in Masterclasses to re- create virtually CERN's antihydrogen production. YouTube clips and webcasts with over 100,000 hits have been produced and we have hosted thousands of visitors per year in CERN. These activities resulted in improved understanding of antimatter among school students and the wider population, and a radical change in the public perception of antimatter, which is now associated with the experiments at CERN rather than with Star Trek.