Similar case studies

REF impact found 26 Case Studies

Currently displayed text from case study:

Exploiting nonlinearity in operational data assimilation for weather prediction

Summary of the impact

Data assimilation is playing an ever increasing role in weather forecasting. Implementing four- dimensional variational data assimilation (4DVAR) is part of the long term strategy of the UK Met Office.

In this case study, an idealised 4DVAR scheme, developed by a team from the Universities of Surrey and Reading working with the UK Met Office, based on the integration of Hamiltonian dynamics and nonlinearity into data assimilation, has now been taken up by the Met Office. It is being used to evaluate options for improving operational 4DVAR. The simplicity of the scheme developed by this team has facilitated careful analyses of some generic problems with the operational model. The outcome includes direct impact on the environment and indirect impact on the economy, both through improvements in weather forecasting.

Submitting Institution

University of Surrey

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences
Economics: Econometrics

Limiting the disruption to aviation caused by volcanic eruptions using balloon observations and model testing eruptions

Summary of the impact

The 2010 eruption of Eyjafjallajökull volcano, Iceland caused prolonged closure of European airspace, costing the global airline industry an estimated $200 million per day and disrupting 10 million passengers. We have developed and tested models that predict the dispersal of volcanic ash and developed instrumentation to monitor ash clouds during flight bans and used it to test the models. Our research played a key role in establishing the need for a flight ban and in the adoption of a more flexible approach to its staged lifting as the emergency continued. It also led to increased levels of readiness and to new emergency procedures being put in place across Europe which have minimised the economic costs and human inconvenience without an unacceptable rise in the risks to passengers and crew. The new procedures safely eliminated unnecessary disruption to flights in the latter days of the crisis and during the subsequent eruption of another Icelandic volcano, Grímsvötn in 2011.

Submitting Institution

University of Reading

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Earth Sciences: Atmospheric Sciences

Development of abatement strategies and policies for air pollutants facilitated by the Master Chemical Mechanism

Summary of the impact

Air pollution is a major health concern and government policy driver. Leeds researchers and colleagues have developed a detailed chemical mechanism which describes reactions in the lower atmosphere leading to the formation of ozone and secondary particulate matter, key air pollutants. The so-called `master chemical mechanism' (MCM) is considered the `gold standard' and has been used by the UK government and industry groups to inform their position on EU legislation and by the US EPA to validate and extend their regulatory models. The Hong Kong Environmental Protection Department has used the MCM to identify key ozone precursors and provide evidence for abatement strategies.

Submitting Institution

University of Leeds

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry, Other Chemical Sciences

Turbulence research improves ocean forecasting and marine energy infrastructure

Summary of the impact

New techniques for measuring, and novel measurements of, turbulence in continental shelf seas and estuaries, developed by Bangor University's Turbulence and Mixing Group, have revolutionised the representation of key vertical exchange processes within state-of-the-art numerical ocean models. These measurements have directly improved modelling accuracy of coastal sea mixing dynamics and the forecasts produced are directly applied in development of government policy, marine energy technology, and search and rescue activities in the UK (e.g. Met Office, Cefas) and Baltic Sea regions of Europe. This measurement of marine turbulence has also provided critical information in determining the effective siting of marine renewable energy plants.

Submitting Institutions

Bangor University,Aberystwyth University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography
Engineering: Environmental Engineering, Interdisciplinary Engineering

Turbulence Generation Method in Urban Environment and Wind Engineering Applications

Summary of the impact

Work by the University of Southampton's Aerodynamics and Flight Mechanics research group (AFM) has led to advances in the field of Computational Fluid Dynamics, a key element of the accurate and cost-effective modelling of airflow and turbulence. New techniques have been incorporated in commercial software releases (e.g. CD-adapco's Star-CD v4) and adopted by leading design and engineering firms (e.g Arup, Buro Happold), giving UK businesses a significant edge over their international competitors. Specifically,

  • CD-adapco with its client base of more than 7,000 users and 3,000 firms, using the new techniques, enjoy a competitive advantage;
  • AFM's work has helped Arup to significantly improve the efficiency and accuracy of design, and Arup's standing on projects.

The techniques have been increasingly influencing the design of wind-sensitive structures by facilitating the faster, cheaper and more precise prediction of factors such as peak wind loading and pollutant dispersion.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Improving the Met Office Weather and Climate Prediction Model

Summary of the impact

Research by Professor John Thuburn and his group at the University of Exeter has made several key contributions to the formulation and development of ENDGame, the new dynamical core of the Met Office weather and climate prediction model. ENDGame has been shown to deliver improved accuracy and better computational performance at high processor counts compared to the current operational dynamical core, directly impacting the technological tools available to the Met Office. These improvements will benefit users when ENDGame becomes operational in early 2014: the economic value to the UK of the weather forecasts produced by the Met Office has been estimated to be in excess of £600M pa, while climate change projections inform policy decisions on mitigation and adaptation with huge economic implications.

Submitting Institution

University of Exeter

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Oceanography
Engineering: Maritime Engineering

Improving weather and climate forecasting

Summary of the impact

Our research since 1993 has led directly to demonstrable improvements in the physical representation of atmospheric particulates in the suite of Met Office numerical weather prediction (NWP) and climate models. These models have had enormous reach and significance across the REF period in both public sector and commercial Met Office activities. Our measurements impact directly on the model prediction of air quality, extreme pollution events (for fire brigade, police and public agencies), visibility, cloud cover, rainfall, and snowfall (for defence and the public weather service, commercial aviation, utilities, road and rail sectors).

Submitting Institution

University of Manchester

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Atmospheric Sciences, Physical Geography and Environmental Geoscience

4. UK Government instigates contingency planning based on evidence of potential fatalities from Icelandic eruptions

Summary of the impact

The 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions in Iceland were stark reminders that global society is increasingly vulnerable to volcanic hazards. Research at the University of Leeds has shown that volcanic gases and airborne particles could be a significant health hazard to humans — potentially more fatal than seasonal `flu. Leeds scientists used computer models to demonstrate that a long-lasting, gas-rich eruption in Iceland could degrade air quality and lead to well over 100,000 deaths across Europe. In January 2012, the number of potential fatalities was used as evidence by the UK government for the decision to add large-magnitude effusive Icelandic eruptions to the UK National Risk Register of Civil Emergencies as a high priority risk with potentially widespread effects on health, agriculture and transport. Leeds researchers continue to advise the UK government on the mitigation of potential volcanic hazards through the Civil Contingencies Secretariat.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Political

Research Subject Area(s)

Earth Sciences: Geology
Environmental Sciences: Environmental Science and Management

New gyroplane design standards improve flight safety

Summary of the impact

As a direct result of University of Glasgow research, there have been no deaths in a gyroplane accident in the UK since 2009. Previously, gyroplanes (also known as autogyros) had a questionable safety record. Following fifteen years of comprehensive studies, researchers recommended innovative new design standards to the Civil Aviation Authority. These recommendations led to the introduction of new civil airworthiness requirements in the UK, subsequently adopted by Australia and Canada. The implementation of these revised regulations has forced gyroplane manufacturers to change their designs. Close to 2000 machines have been produced since this design change, revolutionising gyroplane safety worldwide.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

UOA09-10: The Mars Climate Databsase for spaceflight missions

Summary of the impact

The Mars Climate Database (MCD), based on research at the University of Oxford, has been used to inform the entry, descent, landing and operation of past and future Mars landers. The MCD has been provided to 112 users, including NASA, the European Space Agency (ESA) and Astrium. The MCD has directly contributed to the successful landing and operation of NASA's Curiosity Mars Rover, and ESA have required Astrium, lead contractor for the ExoMars mission, to use it for the design of components and systems. The impacts of the MCD include (1) contributions to preventing failures of billion-dollar space missions and thus financial savings for space agencies and (2) enabling viability studies of spacecraft designs by industrial contractors.

Submitting Institution

University of Oxford

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Atmospheric Sciences, Geology, Oceanography

Filter Impact Case Studies

Download Impact Case Studies