Similar case studies

REF impact found 32 Case Studies

Currently displayed text from case study:

The design of radio frequency (RF) components for cellular mobile communications (Impact Case Study 1)

Summary of the impact

Research at the University of Leeds underpinned the development and manufacture of RF filter technology by Radio Design Ltd, including the 3G `Universal RF Combiner Unit' with sales of >£18M (40,000 units) since 2008, which led to the company's Queen's Award for Enterprise (Innovation) in 2011. This technology was subsequently improved specifically for the 2012 London Olympics for shared use by all five cellular operators, and has now been further developed, again using Leeds research, for 4G systems (with >£4.2M sales in 2013). Leeds research has contributed directly to ~75% of Radio Design's products, and its expansion from 11 employees in 2008 to 150 employees today. Leeds-designed RF filters have also been widely utilized by other manufacturers, with estimated annual international sales of tens of millions of pounds since 2008.

In parallel, Leeds research on the physical modelling and design of pHEMT switches has been used since 2008 by RFMD (UK) Ltd (previously Filtronic Compound Semiconductors), who supply all major mobile phone manufacturers — over 2 billion pHEMT switches are used worldwide, with RFMD's estimated sales exceeding £250M since 2008.

Submitting Institution

University of Leeds

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

UltraCane and UltraBike: ultrasonic aids for visually-impaired people (Impact Case Study 3)

Summary of the impact

Research at the University of Leeds led to the development of UltraCane — an ultrasonic cane for people who are visually-impaired that gives tactile feedback to the user's hand with progressive non-contact warning of obstacles (ground-to-head) up to 4 m. [text removed for publication]. Testimonials from users describe its transformative nature on their quality of life, giving `a true feeling of independence', whilst healthcare professionals commend `the simplicity of operation and ease of use'. Furthermore, with a technology mimicking bat echolocation, the UltraCane has informed and engaged the wider public in science and engineering through, for example, the BBC `Miracles of Nature' series. The technology has also been developed to allow people who are visually-impaired to cycle independently and safely around a cycle track — the `UltraBike'.

Submitting Institution

University of Leeds

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Global sales of tomographic instruments benefiting process industries

Summary of the impact

Research into industrial process tomography has been performed at the University of Leeds from 1999 to the present day with much of this being in collaboration with Industrial Tomography Systems plc (ITS). This research, together with the associated intellectual property, has provided the foundation of 5 innovative new products developed and produced by ITS during the eligible period. These new products have generated sales of £5m and are in large part responsible for increases in turnover and employment of approximately 60%, and exports of 67% since 2008. These instruments are used in a significant number of new applications and are generating major benefits to end users in the oil and gas, pharmaceuticals, chemicals, consumer products, minerals and food sectors.

Submitting Institution

University of Leeds

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

Modern global telecom systems powered by technology from the University of Glasgow

Summary of the impact

Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.

Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Innovative acoustic material enables economic growth while reducing waste and noise pollution

Summary of the impact

University of Bradford research has enabled a material manufacturing company, Armacell, to reuse up to 95% of its production waste to produce new, high-value acoustic products with up to 50% better acoustic performance than any competition products of similar size. We protected the developed IP through several international patents and set up a spin-off company, Acoutechs Ltd, to explore this technology commercially. These materials are now used to reduce noise levels below the recommended limits and to improve the general acoustic quality of spaces at home and work for the benefit of public health. The products generate an annual turnover of more than €4 million for Armacell and prevent more than 500 tonnes of plastic waste from going into landfill annually.

Submitting Institution

University of Bradford

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering, Interdisciplinary Engineering

Electric Potential Sensor Technology – From Fundamental Physics to Product

Summary of the impact

A ground-breaking range of innovative sensor products — the EPIC Sensors — has been developed and marketed world-wide by Plessey Semiconductors Ltd. The EPIC Sensors allow contact-free measurements of electric phenomena, initially aimed at the health, sports and automotive markets. They operate on the non-invasive, low-cost, generic, award-winning Electric Potential Sensor (EPS) technology invented and developed at Sussex as a spin-off from fundamental low-temperature physics research. Income to the University from licence fees, costs and royalties started during 2012. Sustained industry engagement with key strategic partners in the medical, forensic, security, materials testing and geophysics sectors, including government organisations, industry and academia, is leading to a wider awareness and adoption of this novel technology.

Submitting Institution

University of Sussex

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering
Medical and Health Sciences: Neurosciences

Public understanding: Nature's Raincoats

Summary of the impact

Nature's Raincoats is a physical exhibition and a website providing easily accessible information and resources. These entities have had extensive use within the public understanding of superhydrophobic surfaces (extremely repellent to water), including The Royal Society Summer Science Exhibition, Cheltenham Science Festival, The Big Bang Fair, British Science Festival and Techfest (India) — reaching thousands of people in the UK and overseas. As well as impacting on improved public awareness, the research informed website provides a direct route to research expertise for companies within the UK and internationally and extends good practice of working with industry e.g. Rolls Royce.

Submitting Institution

Nottingham Trent University

Unit of Assessment

General Engineering

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Biomedical Engineering

Case Study 4: Novel optimisation significantly reduces costs, increases turnover and reduces emissions

Summary of the impact

Optimisation tools developed in the UoA have significantly advanced the ability to find the best designs for complex systems in cases where these were previously unobtainable. These optimisation tools have been implemented in several companies to shorten design times, reduce costs and reduce CO2 emissions. This has brought about new multi-million pound revenues, long-term contracts, increased employment and contribution to sustainability targets.

Submitting Institution

University of Leeds

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics, Statistics

Particle shape measurement: commercialisation and applications

Summary of the impact

Research into on-line control of crystallisation at the University of Leeds started in 2002 which led to a collaboration being formed with Malvern Instruments Ltd (MIL) in 2006 and subsequently to the development of a new type of instrument capable of measuring particle shape and shape- distribution. The instrument range, Morphologi, launched in 2007 has since generated sales for MIL of approximately £11 million since January 2008. The instrument is now operational within many industrial sectors and used e.g. to optimise process efficiency and enhance product quality. The success of this instrument has contributed to providing secure employment at MIL and to obtaining the "Queen's Awards for Enterprise: International Trade" in 2011.

Submitting Institution

University of Leeds

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Chemical Engineering, Interdisciplinary Engineering

Applications of microwave and mm-wave sources and amplifiers for the defence, security and health sectors

Summary of the impact

Radiation sources and amplifiers, in the spectral region from microwave to terahertz, are extensively used in UK industry and public sectors such as security, defence, health and the environment. Companies, including e2v Technologies plc. (e2v) and TMD Technologies Ltd. (TMD), have developed and sold new radiation products based on post-1996 research undertaken at the University of Strathclyde. Their devices accessed new frequency ranges with considerable increases in power and bandwidth. The designs were transferred to industry, where devices have been constructed, jobs created, policy changed and considerable investments made. These sources have had extensive beneficial impact through applications in defence, surveillance, materials processing, health sciences and environmental monitoring.

Submitting Institution

University of Strathclyde

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies