Log in
Surrey Spin-out Surrey Nano Systems (SNS) is a business based around key patents resulting from the work of Prof. Ravi Silva and his team. SNS has raised over £11M from investors who have scrutinised the technology and recognise its value. The business develops technologies for low-substrate-temperature growth of carbon nanotubes (CNTs) and for novel low-k dielectric materials both of which align with the International Technology Roadmap for Semiconductors (ITRS). SNS is working closely with multinational leaders and has attracted a team that includes senior management experience of selling into the semiconductor process equipment market.
Research in atmospheric pressure (thermal) chemical vapour deposition (APCVD) at the University of Salford demonstrates the following impact:
The isolation and characterisation of graphene by Geim and Novoselov demonstrated its potential to underpin disruptive technological change across an incredibly broad range of industries. This resulted in rapid global uptake of new technologies in the REF period, with at least $200m recent commercial investment in graphene production. Blue-chip companies have also made significant investments leading to the generation of 7740 industrial patents. The first set of graphene-based products has reached the market with revenues already exceeding $10m per month. This commercial activity has been matched by global shifts in public research and innovation funding of at least $2.4bn, as governments have moved to facilitate graphene research and commercialisation.
Nanoforce Technology Ltd. is a spin-out company wholly owned by QMUL, active in the field of polymeric and ceramic materials. Bridging the gap between academic research and industrial applications, Nanoforce has done business with over 100 companies since 2008, providing the key research expertise and specialist facilities to enable the development of new materials and commercial products, including Sugru® a room temperature vulcanizing silicone rubber, Zelfo® a self-binding cellulose material, and BiotexTM a range of high-performance yarns, fabrics and pre- consolidated sheets based renewable resources such as PLA and natural flax fibres. Nanoforce has been promoting the development and commercialisation of spark plasma sintering (SPS) since 2006, which resulted in Kennametal recently opening the first commercial SPS facility in the UK to produce advanced ceramic armour. Nanoforce's clients have included large multi-nationals such as DSM, Dow Chemical, General Electric, SABIC, L'Oreal, Shell, Sibelco, governmental agencies such as Defence Science and Technology Laboratory (Dstl), and a large number of SME's.
Ehiasarian and Hovsepian of the Materials and Engineering Research Institute (MERI) have achieved significant economic impact through industrial uptake of their innovations in High Power Impulse Magnetron Sputtering (HIPIMS). Exploiting these innovations, HIPIMS treatments have been used by manufacturers to enhance the surface properties of millions of pounds worth of products. Applications include industrial blades, components within jet turbines, replacement hip joints, metallised semiconductor wafers and satellite cryo-coolers. Patents based on Ehiasarian and Hovsepian's research have achieved commercial success. In the REF impact period, HIPIMS machines equipped to deliver MERI''s HIPIMS surface pre-treatment have achieved sales of over £5m, and income generated through SHU's HIPIMS-related licences has totalled £403,270. In 2010 Ehiasarian's group established the Joint Sheffield Hallam University-Fraunhofer IST HIPIMS Research Centre, the first such Centre in the UK. This has broadened the industrial uptake of MERI's HIPIMS technologies and stimulated a network of sub-system providers.
Research undertaken by the University of Sheffield between 1999 and 2012 in functional oxide thin films was commercialised through knowledge transfer partnerships (KTP) with Ilika Technology. This directly led to over £1M in contracts and subsequent improvements in the commercial viability of the product base of blue-chip companies such as Toshiba, Toyota and Ceramtec and contributed to the increase in Ilika's turnover to ~£2M per annum and a growth in staff from 5 to 35 in 2012. In 2011, Ilika floated on the stock exchange with a valuation of ~£20M. The CEO has personally recognised the role Sheffield has played in establishing Ilika Technology as a limited company and in growing company revenue through contracts with leading multinationals.
An advanced plasma source based on novel engineering has been developed and proven in conjunction with Thin Film Solutions Ltd (TFSL). This source is retrofittable to existing electron- beam deposition systems and significantly improves the properties of thin films and advanced optical filters. TFSL has produced commercial products based on this source and has achieved sales to date of £2.3 million (letter from CEO of TFSL provided) as the new technology has been widely adopted in the optical filter industry.
Prof Silver's research on the development of the technology to fabricate 3D electro-optic circuits via ink-jet and screen printing has provided a more sustainable solution to conventional back-lit posters (energy saving up to 75%) and printed displays. Due to the flexibility of the components (they can be printed in any shape or design) and low maintenance (battery operational), the technology has been commercially exploited by several industrial collaborators. Johnson Matthey have used Brunel research to gain knowledge of the market and supply chain, to sell silver and palladium nano-particles for ink-jet printing and to inform the investment of around £2M on R&D in this area. Intrinsiq Materials Ltd successfully marketed copper-based inks for ink-jet printing of ACEL displays, allowing the company to employ 22 additional staff. In addition, they have secured $4M of venture capital investment to develop the technology. Printed Electronics Ltd have secured £8.6M of investment to develop a high-volume supply chain for printed electronics, and have employed an additional 9 staff within the company. As a result of working with Brunel, Keeling and Walker have begun to sell ink that contains antimony-doped tin oxide nano-powders.
The Thin Film Centre (TFC) group at UWS pioneered thin film materials and processes for plastic electronics with Dupont Teijin Films (DTF) Ltd and Plastic Logic (PL) Ltd over a period of nine years. This work was pivotal to the growth of PL from a start-up position resulting in the first all-polymer e-book reader and was the basis of a world leading position in the supply of specialised substrates for DTF Ltd.
Innovative deposition equipment manufactured by AIXTRON Nanoinstruments, a company created to exploit research outputs of the University of Cambridge Department of Engineering, is used around the world to grow carbon nanotubes and graphene. These materials are subject to intensive efforts to refine and commercially exploit their unique properties. AIXTRON Nanoinstruments is based in the UK and has produced almost 100 products, the majority of which were after 2008 and sold to customers internationally. Products range in price from GBP80k to GBP1.5M. [text removed for publication]