Log in
This case study describes the development, application and commercialisation of an open source tool, BSMBench that enables supercomputer vendors and computing centres to benchmark their system's performance. It comprehensively informs the design and testing of new computing architectures well beyond other benchmarking tools on the market, such as Linpack.
The significance of our code is that, unlike other benchmarking tools, it interpolates from a communication- to a computation-dominated regime simply by varying the (physics) parameters in the code, thus providing a perfect benchmark suite to test the response of modern multi-CPU systems along this axis. The impact of this work has great reach: a start-up company, BSMbench Ltd, has been founded to develop and commercialise the software; adopters have included IBM - one of the giants of the supercomputer world (where it uncovered errors in their compilers); it has been deployed by Fujitsu to validate its systems, by HPC Wales, a multi-site, commercially focussed national computer centre and by Transtec, an HPC company employing over 150 staff; and tutorial articles about BSMBench have appeared in magazines such as Linux Format.
This software tool spawned from our research into "Beyond the Standard Model" (BSM) physics which aims to understand the Higgs mechanism in particle physics at a fundamental level. This involved simulating quantum field theories using bespoke code on some of the fastest supercomputers on the planet.
Based in the School of English, the Research and Development Unit for English Studies (RDUES) conducts research in the field of corpus linguistics and develops innovative software tools to allow a wide range of external audiences to locate, annotate and use electronic data more effectively. This case study details work carried out by the RDUES team (Matt Gee, Andrew Kehoe, Antoinette Renouf) in building large-scale corpora of web texts, from which examples of language use have been extracted, analysed, and presented in a form suitable for teaching and research across and beyond HE, including collaboration with commercial partners.
Knowledge of the three-dimensional structures of macromolecules is a prerequisite for understanding their function at the atomic level, an essential component of modern drug development. Most structures are determined by X-ray crystallography: the majority using molecular replacement (MR, which exploits known structures of related proteins), and about half of the remainder using single-wavelength anomalous diffraction (SAD). The Phaser crystallographic software, developed by Read and colleagues, implements powerful new likelihood-based methods for MR and SAD phasing and has made a large impact, accelerating over the period 2008-2013. At the pharma giant, AstraZeneca, Phaser is considered the "tool of choice" for solving structures by MR.
The Beazley Archive Online Database enables large and diverse audiences to access and understand ancient art through Oxford research. It allows users around the world to ask and answer their own research questions and to learn about ancient imagery. It is principally dedicated to the study of ancient Athenian figure-decorated pottery and ancient/neo-classical engraved gems. It makes available hundreds of thousands of pictures and information-fields which can be browsed and searched in a variety of ways, according to the level and requirements of the user. The Database is the foremost academic tool for the study of ancient Greek pottery, but its demonstrable impact extends far beyond academia, to an international audience of students, educators, museums, businesses, and private researchers.
Research in Multi-spectral Imaging (MSI) of manuscripts by researchers in the University of Oxford's Faculty of Classics has led to advances in imaging technology. A series of initiatives by Dr Dirk Obbink that captured images through MSI technology have led to the decipherment of new texts that have made a substantial mark in the public sector. Equity spinout of this technology has resulted in the entry in the market of the first portable multispectral scanning unit in flat-bed desktop format. The scanner, which uses innovative patented LED technology at different levels of the light spectrum, was developed under funding from ISIS, Oxford University's technology transfer division.
Collaboration between Imperial College Departments of Mechanical Engineering and Surgery led to the development of active constraint robot solutions which augment surgeon skills so that joint replacement components are implanted accurately and successfully. This led to the founding of Acrobot to develop innovative surgical technologies. Acrobot was acquired by Stanmore Implants Worldwide in 2010. An orthopaedic stereotaxic instrument, based on Imperial research, obtained US Food and Drug Administration (FDA) clearance in 2013. This has led to Mako-Surgical purchasing Stanmore Implants Acrobot technology in April 2013.
Our research on Active Shape Models (ASMs) and Active Appearance Models (AAMs) opened up a radically new approach to automated image interpretation, with applications in industrial inspection, medical image analysis, and face tracking/recognition. We identify:
Series of images from animal behaviour studies contain vast quantities of complex and highly valuable data. Extracting the value from this scientific data often requires expert annotation. This is frequently an intuitive process based on experience gained through years of training to make important decisions. Experts are rare, expensive and hard to train so the iBehave project at the University of Edinburgh (2006-2009) sought to reverse this model and deliver systems that learned to mimic expert annotation of video data. This effort resulted in a new spinout from the School of Informatics, a software company called Actual Analytics Ltd (Actual). Founded in 2010, Actual delivers innovative software solutions for behaviour analytics which use machine learning algorithms to process video data of laboratory animals to improve the accuracy of the experimental process and reduce the need to use animals in scientific research.
Augmented reality (AR) and physiological computing (PC) represent computing paradigms for wearable technology. Both forms may be combined to deliver Adaptive AR (A2R) where changes in psychophysiology are used to adapt digital artifacts in real-time. A number of art exhibits were created that represented A2R and were presented to the public as part of the Turning FACT Inside Out show in Liverpool. The impact of this research is evidenced by: (a) engaging the public with emerging technology, (b) influencing the strategy of an arts organisation, and (c) informing the practice of artists.
Reduction of unpleasant ambient noise during MRI has been enabled through innovative engineering solutions developed at the Medical Research Council Institute of Hearing Research (MRC IHR). Intellectual property was licensed to Optoacoustics Ltd and the resulting OptoActive™ active noise-cancelling headphones for MRI are the only one of their type commercially available, enabling free conversation between patients and clinicians. The product was formally launched in September 2012 and has worldwide sales including in the USA, Europe, Asia and the Middle East.