Log in
In partnership with the US company Nalco, the University's Surfactant & Colloid Group developed a new multifunctional technology (Clean n Cor) for the oil industry that both removes accumulated deposits at a metal surface (enabling "break-through" of corrosion inhibitor to the metal surface) and inhibits corrosion. Clean n Cor technology not only protects assets such as oil pipelines against corrosion but also maximises oil production through enhancing water injectivity (water flow per unit pressure drop). Since its launch in 2007, it is currently one of Nalco's fastest growing new technologies and is used at over 100 production locations worldwide.
Research by Marianne Odlyha and her group at the Department of Biological Sciences, Birkbeck, University of London, has led to the development of minimally invasive analytical methods and portable tools (dosimeters) for assessing damage to historical artefacts. These dosimeters are now in use at locations around the world, including the Tate Gallery's store rooms, English Heritage properties (Apsley House) and museums in Ghent, Cracow and Mexico. Methods for assessing damage, and for mitigation of pollutant impact on objects in museum enclosures, have been disseminated to conservation professionals through workshops and training courses held across Europe. The assessment and prevention of damage is vital to conserve the cultural as well as the monetary value of artefacts.
The zebra mussel is one of the world's most damaging invasive species, but existing control approaches cause significant environmental damage. Researchers at the University of Cambridge have developed the patented `BioBullet', which encapsulates a toxic active ingredient in a harmless edible coating, enabling efficient, targeted product delivery and dramatically reducing environmental pollution. [text removed for publication]
Our research on the natural processes that reduce pollutant concentrations in the subsurface has enabled the UK to adopt "Natural Attenuation" as a management policy and has changed professional practice at many contaminated sites. The massively reduced costs of this approach over active clean-up of sites in 2008-13 has saved a minimum of £100M for the UK. Our research has also influenced European practice, saving hundreds of millions of Euros. The beneficiaries are typically chemical industries of all sizes, from refineries to small repackaging plants and petrol station owners, but also local authorities and the State in cases where they would bear the cost of clean-up.
Human activity leads to the emission of many greenhouse gases that differ from carbon dioxide (CO2) in their ability to cause climate change. International climate policy requires the use of an "exchange rate" to place emissions of such gases on a "CO2-equivalent" scale. These exchange rates are calculated using "climate emission metrics" (hereafter "metrics") which enable the comparison of the climate effect of the emission of a given gas with emissions of CO2. Research in the Unit has contributed directly to (i) the calculation of inputs required for such metrics, (ii) the compilation of listings of the effects for a large number of gases and (iii) the consideration of alternative metric formulations. During the assessment period this work has been used in the implementation of the first commitment period of the Kyoto Protocol (2008-2012) to the United Nations Framework Convention on Climate Change (UNFCCC), and in decisions and discussions (which began in 2005) on the implementation of the Kyoto Protocol's second commitment period (2013-2020), as well to intergovernmental debate on aspects of the use of metrics in climate agreements.
The research on the use of single source precursors in quantum dot synthesis undertaken by Professor Paul O'Brien in the Department of Chemistry at Imperial College between 1994 and 1999 resulted in papers and a patent which led to the formation of Nanoco Group PLC, currently a world-leader in the supply of quantum dots (QDs). Quantum dots have applications in backlighting for LCD displays, LED general lighting and thin film solar cells. Nanoco was listed on AIM on the London Stock Exchange in 2009 and by January 2013 Nanoco employed 78 people, had annual revenue of £3 million, and had signed agreements with several major companies in the US and Japan including Dow Chemical, Osram and Tokyo Electron.
Plaxica is a spin-out from, and based, at Imperial College London with economic, societal and environmental impacts. Launched in 2008, Plaxica is a process technology licensing business which is tackling the barriers that currently prevent a wider acceptance of bioplastics; specifically improving properties, decreasing cost and using non-food feedstocks to manufacture the biopolymer poly(lactic acid), PLA. Plaxica's technology uses sustainable feedstocks to produce PLA using more energy-efficient processes, to produce a strong, high-quality polymer, the result of which is a low-cost, environmentally-friendly biopolymer for use in applications including textiles, packaging, and automobile parts. In the REF period Plaxica has raised £10m from investors such as Imperial Innovations, Invesco Perpetual and NESTA Investments. The market pull for biorenewable materials from consumers is strong and the EU predicts that PLA will substitute >10% of the existing market for petrochemical polymers and forecasts a market >$15b [A].
The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.
The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.
The European Union Cosmetics Directive (adopted in 2003) banned the use of animals for testing cosmetic ingredients and the final deadline for compliance was March 2013. The development of alternative methods of safety assessment was therefore essential to ensure both consumer protection and viability of the cosmetics industry. Our research has focussed on the development of computational alternatives to animal testing, including the identification of structural alerts that have been encoded into computational workflows to support toxicity prediction. These methods have delivered tools to the cosmetics industry in Europe and worldwide to enable them to comply with the directive and develop new products. Our findings have also been used to inform thinking and policy in Europe and to develop a new approach to the safety assessment of cosmetics.