Log in
The SAFT-VR family of thermodynamic models has made it possible to predict reliably the behaviour of the many complex and challenging fluids that are found across a range of industrial sectors, including oil & gas, chemicals (refrigerants, surfactants, polymers), energy (carbon capture solvents, carbon dioxide-rich streams) and pharmaceuticals.
The SAFT-VR models have had a wide impact on industrial practice. At BP, they have been used to design novel surfactants that have increased the lifetime of oil fields up to five-fold, avoiding maintenance interventions costing millions of dollars and increasing productivity by 50% (worth $2-3 million per year per well). At Borealis, they have been used to understand how to increase the productivity of the reactor in the flagship Borstar process by 30%. At ICI and Ineos/Mexichem, they have been used to design efficient processes for producing replacement refrigerants with much reduced reliance on extreme and expensive experiments involving hydrogen fluoride, a highly corrosive substance. Industrial demand for access to the predictive capabilities of SAFT-VR has been such that Imperial College has licensed the software in 2013 to a UK SME in order to distribute it worldwide to users.
Mineral separation by froth flotation is the largest tonnage separation process in the world, and is used to recover the very small fraction (<0.5%) of valuable mineral from the mined ore. Typically, 5-15% of the valuable minerals are not recovered due to sub-optimal process settings, most important of which is the air rate. A methodology to determine the optimal air rate range to use, Peak Air Recovery (PAR), was developed by the Froth and Foam Research Group at Imperial College London.
Anglo American Platinum produces 40% of the world's platinum. They use the PAR methodology on all their flotation plants to establish to air rate control limits, tightening the operating range and improving the separation performance. Rio Tinto annually produce 300 000 tons of copper and 500 000 oz gold from their Kennecott Copper mine. They have implemented PAR as a control strategy, and statistical comparative tests have shown an increase in copper and gold recovery from this mine alone of the order of 1%, with a nominal value of approximately $30m per annum.
ERPE research led to the following impacts in the REF2014 period:
Powder handling research at the Centre for Numerical Modelling and Process Analysis (CNMPA) enables industries to reduce the risk in new powder processes and to troubleshoot existing ones. The study focuses on two closely-related projects that have resulted in a series of instruments, analysis techniques, training and spin-out research that has found application in a large number of companies all over the world, in a wide range of industries. The case is typical of the influence that the CNMPA has had on industry awareness and practice in the UK and globally.
In High Gravity (HG) brewing the substrate (the wort§) fermented by the yeast is concentrated from a traditional value of about 12% solids to concentrations of upwards of 20%. Research (1993-2008) by Graham's Stewart's team at Heriot-Watt, into the process of brewing beer and distilling spirits in a more cost effective and quality enhanced manner led to substantial improvements in the HG brewing process, now used worldwide. This allows up to 50% more beer to be made at the same plant and reduces distillation costs. In both industries HG-wort production has allowed very substantial savings (>£555 million) in capital expansion costs.
§The substrate produced by the mashing of malt and grains — primarily consisting of fermentable sugars.
Research by Smales has led to IP that protects novel technologies for mammalian recombinant cell line development. Based upon mass spectrometry and in silico modelling approaches, the technology has permitted the development of highly efficient cell lines for monoclonal antibody production in the commercial environment at Lonza Biologics. This IP has three important benefits to the pharmaceutical and biotechnology industries:
(a) It allows key biopharmaceuticals to be made using substantially less resource and with an overall higher efficiency.
(b) It reduces the time from transfection to production of cell banks.
(c) It accelerates bioreactor evaluation and the ability to predict cell line performance at the bioreactor scale early in cell line construction.
Over the past 10 years there has been a massive expansion in biomass use for power generation, particularly in the UK and Europe. Research at the University of Leeds has been crucial in addressing many of the challenges inherent in moving from coal to biomass including milling, combustion characteristics, deposition and corrosion enabling adoption of biomass for power generation. The research has impacted: (1) company strategy and industry practice for the use of biomass and key technology choices; (2) society, health and environment via CO2 reduction and emission reduction; (3) national energy security through an increased fuel inventory; (4) UK Government and EU policy as expert members of advisory groups.
Research into on-line control of crystallisation at the University of Leeds started in 2002 which led to a collaboration being formed with Malvern Instruments Ltd (MIL) in 2006 and subsequently to the development of a new type of instrument capable of measuring particle shape and shape- distribution. The instrument range, Morphologi, launched in 2007 has since generated sales for MIL of approximately £11 million since January 2008. The instrument is now operational within many industrial sectors and used e.g. to optimise process efficiency and enhance product quality. The success of this instrument has contributed to providing secure employment at MIL and to obtaining the "Queen's Awards for Enterprise: International Trade" in 2011.
Chemtrix Ltd. was established in February 2006 as a 50-50 joint venture between the University of Hull and Lionix Ltd. In 2008 the company attracted investment from Limburg Ventures BV, Panthera, Technostartersfund, Microfix BV and Hugo Delissen (€2 million) that led to the creation of Chemtrix BV. In 2009 the Company launched Chemtrix USA and a second investment round followed with investors Particon BV. In 2012 ESK Ceramics GmbH & Co. KG, acquired a minority interest (30%) in Chemtrix BV based on a valuation of €5.3 million.
The three products developed and marketed by Chemtix, Labtrix®, KiloFlow® and Plantrix®, are differentiated from competitor products as they offer `scalable flow chemistry', such that optimised reaction conditions can be easily scaled from R&D to production. In addition to the employees and investors in Chemtrix the main non-academic beneficiaries of the research have been industrial customers such as Janssen Pharmaceutica NV, Edward Air Force Base, Iolitec GmbH and DSM.
The field of conceptual chemical process design as practiced industrially has been influenced significantly by the outputs from the Centre for Process Integration (CPI) at Manchester. Process Integration Ltd (PIL) was spun-out from Manchester and currently employs over 50 staff globally, who have conducted projects that have resulted in annual cost savings of hundreds of millions of US dollars. The application of CPI technology has led to significant reductions in both energy costs and emissions of greenhouse gases. Since 2008 ca. US$350m of savings have been realized through the exploitation of CPI technology with US$1.4m generated from software sales.