Unit of Assessment: Chemistry

REF impact found 125 Case Studies

Currently displayed text from case study:

Abraham solvation parameter approach benefiting the chemical industries

Summary of the impact

The Abraham solvation parameter approach developed at UCL has become integral to the work carried out by drug discovery teams at [text removed for publication] and other major pharmaceutical companies, as well as research and development groups at international chemical companies including Syngenta and [text removed for publication]. It enables chemists to predict physicochemical and biochemical properties of chemicals, including drugs and agrochemicals, rapidly and efficiently, without the need to conduct time-consuming experiments. The method helps drug discovery teams to identify and optimise the most promising compounds, and often results in fewer compounds being made before a candidate is selected, saving time and resources. The approach has been integrated into software used for drug discovery [text removed for publication].

Submitting Institution

University College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry
Biological Sciences: Biochemistry and Cell Biology

A break-through corrosion inhibitor technology for heavily fouled systems

Summary of the impact

In partnership with the US company Nalco, the University's Surfactant & Colloid Group developed a new multifunctional technology (Clean n Cor) for the oil industry that both removes accumulated deposits at a metal surface (enabling "break-through" of corrosion inhibitor to the metal surface) and inhibits corrosion. Clean n Cor technology not only protects assets such as oil pipelines against corrosion but also maximises oil production through enhancing water injectivity (water flow per unit pressure drop). Since its launch in 2007, it is currently one of Nalco's fastest growing new technologies and is used at over 100 production locations worldwide.

Submitting Institution

University of Hull

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Other Chemical Sciences
Engineering: Materials Engineering

Air Quality; Measurement, standardisation, and quantification of airborne contaminants

Summary of the impact

Impact type: Public Policy

Significance: The research provided evidence for formulation of government policies to ameliorate poor air quality, to which fine particulate matter (PM2.5), O3 and NO2 are the most important contributors; PM2.5 alone reduces average life expectancy in the UK by 6 months and costs £9bn-£20bn a year. The research has been incorporated into UK national guidance and policy-evidence documents for Defra, the Health Protection Agency, and the Environment Agencies.

Beneficiaries are the public and the environment.

Research; date; attribution: EaStCHEM research (1995-2011) (a) established reliable techniques to measure NO2 for a national protocol, and (b) quantified the impact of pollutant emissions on PM2.5 and O3 concentrations, and on hospital admissions and deaths. Heal (EaStCHEM) led the research and wrote, collaboratively in some cases, the reports and the work cited.

Reach: UK wide.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Chemistry

Summary Impact Type

Political

Research Subject Area(s)

Medical and Health Sciences: Public Health and Health Services

Albachem: Commercialisation of the chemical synthesis of biologically active human proteins

Summary of the impact

Impact: EaStCHEM spin out Albachem (1994), subsequently incorporated into the Almac group, enabling the latter company to become a world leader in the provision of chemically synthesised proteins.

Significance: Chemical synthesis is competitive with recombinant methods for commercial production of the therapeutic polypeptides that represent ~50% of drugs in big pharma pipelines and have a market value in 2008 of over $13B. The value attributable to Ramage's methods for polypeptide syntheses over the REF period is estimated at approximately £6M.

Beneficiaries: Drug manufacturers, contract research organisations, patients, clinicians.

Research: Studies (1993-6) led by Ramage (at the University of Edinburgh) on new methods for high-yield total syntheses and purification of long polypeptides.

Reach: Almac's protein-manufacturing team remains in the UK with 24 staff members. The Almac Group, headquartered in N. Ireland, has 3300 employees globally (1300 outside UK) and sells to 600 companies worldwide.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology, Microbiology

Atlas Genetics – “Test and Treat” diagnostics for infectious diseases

Summary of the impact

This case study outlines the impact in generating investment in a spin-out SME and in developing a technology for clinical diagnosis based on chemistry research carried out in Bath. The research led to a spin-out company, Atlas Genetics, which has raised over £18M funding in the REF period specifically to develop the Atlas io platform, novel technology for rapid (<30 minute) and robust detection of infectious diseases suitable for point-of-care. The investment has created new jobs for highly skilled workers at the cutting-edge of medical diagnostics, with Atlas currently employing 36 staff. The io platform has been fully developed and has undergone successful clinical tests on multiple infections (based on bespoke Chemistry developed at Bath) prior to clinical trialling and rollout in Europe and the United States.

Submitting Institution

University of Bath

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Physical Chemistry (incl. Structural)

Biocatalysists for Industrial and Medical Applications

Summary of the impact

Queen's University Belfast has developed a number of biocatalytic processes for the production of pharmaceutical intermediates which have been applied commercially. The most significant involved Vernakalant, a new drug for treatment of the most common form of irregular heartbeat, now available in the EU, and currently awaiting approval in the USA and Canada. In addition, QUB has sold £300,000 worth of bioproducts and through the collaborations with Almac Sciences facilitated the initiation of their biocatalysis business which currently is a multi-million revenue earner for Almac Sciences and employs 30 staff, including 15 PhD graduates from the Queen's group.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Physical Chemistry (incl. Structural)

Biocompatible polymer coatings for the long-term implantation of biomedical devices in humans

Summary of the impact

Biomedical devices that need to be implanted into the body typically experience the so-called foreign-body reaction: proteins adhere to the surface of the devices, leading to rapid loss of function and, eventually, to a requirement for replacing the device. Between October 2006 and September 2011, The University of Reading, in collaboration with the UK SME BioInteractions Ltd., developed and evaluated a range of new polymers for coating implantable biomedical devices, especially coronary stents and catheters. The result was a coating system that can deliver a drug controllably over a pre-defined period, leading to the commercial biomaterials platforms AdaptTM and AssistTM. This work resulted in capital investment by Biointeractions Ltd and a substantial increase in their research staffing.

Submitting Institution

University of Reading

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Biomedical Engineering, Materials Engineering

C4 - Bio Nano Consulting: a successful bio and nanotechnology consultancy business

Summary of the impact

Bio Nano Consulting (http://www.bio-nano-consulting.com) was established as an operating business in 2007 through a joint venture between Imperial College London and UCL, whose formation was underpinned by research produced by Professor Tony Cass's group at Imperial. The company is the first consultancy in Europe to focus on the increasingly important intersection between bio- and nanotechnology, and it facilitates the development and commercialisation of new biomedical and nanotechnology-based techniques. Since its start-up, the company has attracted numerous clients across the aerospace and diagnostics sectors, including Lockheed-Martin and [text removed for publication]. The company's activities have generated £6M worth of revenue and it has a growing portfolio. The company, which is based in London, currently has 8 full time employees.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Inorganic Chemistry, Physical Chemistry (incl. Structural)

Cervical Cancer Diagnostics

Summary of the impact

Through research carried out under an EPSRC Teaching Company (KTP) award, we assisted an SME, CellPath, to develop the capacity to manufacture a novel set of dyes (Ortho Stains) for use in the Papanicolaou cervical smear test and other histological procedures. The company, previously mainly known for manufacture and sales of laboratory plastics etc, rapidly become the UK market leader in cytology stains, with over 50% of the domestic market, and exports to Finland, France, Italy, Japan, Norway, Sweden and the USA. As a result the company has increased turnover by 400% and the workforce has grown from 5 to 65 employees.

Submitting Institution

Bangor University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry

Changing clinical approaches for treatment of burns in children

Summary of the impact

Half of all burn injuries occur in children and around 10% of children who are burnt become infected by disease-causing bacteria that can increase the likelihood of scarring and in some cases cause death. Novel wound dressing prototypes have been developed using responsive smart sensing chemistry. These provide clinical solutions and commercial opportunities, have led to the founding of the charity Healing Foundation Children's Burns Research Centre with £1.5M of funding, have influenced the work of other charities and altered attitudes and practice in clinical paediatric burn treatment. The impact has been achieved by development of the novel chemistry in partnership with clinicians and practitioners, and through extensive engagement with health professionals, well beyond normal academic reach, parents and the wider public.

Submitting Institution

University of Bath

Unit of Assessment

Chemistry

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences

Filter Impact Case Studies

Download Impact Case Studies