Log in
We have optimised aerospace structural designs and assessment methods through development and application of hybrid residual stress characterisation techniques. Our research results on bonded crack retarders have redirected industry development programmes on hybrid metal laminate material systems and been used to evaluate reinforced structural concepts for US Air Force wing and fuselage applications. Methods to assess and mitigate maintenance-induced damage have been developed and implemented based on our research. Our contour measurement technology has been transferred to the US Air Force, which now has the capability to perform measurements in-house and support work with both NASA and the US Navy.
Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]
This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.
Impact on industry, academia and government institutions from engineering materials research in the Mechanical Engineering department has been delivered through it directly leading to UK, USA and International Standards and Codes relating to three themes:
The results of the research of staff in this unit have led directly to UK, US and International Standards and Codes: ASTM Standards E1457-07 (2012) and E2760-10 (2012); R5 EDF Energy Code of Practice (2012); BS 7910 (2013); ISO 25217 (2009); ISO CD 15114 (2011) and ISO 13477 (2008). These documents all cite peer-reviewed publications by staff from this unit. These Standards and Codes are now the basis of fracture-mechanics methodologies used by leading engineering companies like Airbus, EDF, E.ON, GKN, Rolls-Royce and Vestas, whose commercial success depends upon technological leadership. In this way our research has led to savings by UK industry of many millions of pounds, as detailed in Section 4.
Research on vapour growth of semiconductor compounds led to a key breakthrough in growing large crystals which form the basis for sensitive X-and gamma-ray detectors. The process was commercialised by a Durham University spin-out company, Kromek Ltd., which floated on AIM at £55M and has over 100 employees in the UK and USA. The X-ray detectors are in use in Kromek's security systems for screening liquids at airports, significantly reducing restrictions on duty free goods. This application won the $400,000 international prize in the 2009 Global Security Challenge. The company also markets gamma-ray detectors for nuclear isotope identification. These have won contracts totalling $7.5M from the US Defense Threat Reduction Agency and are in use at Fukushima.
Research at Portsmouth has significantly improved the understanding of damage tolerance under creep-fatigue-oxidation conditions experienced in aero-engine components. The understanding has been developed through research on a new-generation disc materials including U720Li and RR1000, which have since been used in Rolls-Royce engines including Trent 900 in Airbus A380, Trent 1000 in Boeing 787 and the latest Trent for Airbus A350 XWB. These new materials have enabled aircraft to operate more efficiently at higher temperatures, with a major impact on CO2 emission and a significant impact on economy due to the new market opportunities and the reduction of operating costs.
Research carried out at Warwick into the growth of silicon-based layered semiconductors has had a variety of impacts in the fields of microelectronics and solar energy generation. In 2004, a spin- out company AdvanceSis was created to exploit the patent portfolio of Warwick's NanoSilicon Group, with an initial £300 k of Regional Development Fund support. The company, having focused on the business of solar energy generation through concentrator photovoltaic (CPV) technology and renamed Circadian Solar, was valued at £3.5 million by the end of 2011. Further impact of the Warwick silicon research, in the period since 2008, has come in the form of joint R&D programmes with companies in the electronics and ICT sectors, including supplying advanced semiconductor materials and by providing highly skilled employees trained in the research group.
This prize-winning outreach project exploits our capability in 3D X-ray imaging to showcase our world-leading research activities in aeroengine materials and manufacturing processes, stimulating young people's interest in science and technology by challenging them to design an engine of their own. Involving an extensive schedule of public events, workshops and activity days, as well as a permanent exhibit at Manchester's Museum of Science & Industry, the project has engaged and enthused hundreds of thousands of members of the public. These outreach activities were recognised by the Royal Academy of Engineering through the award of its Nexia Solutions Education Innovation prize.
Wide Chord Fan Blades provide a key competitive advantage for Rolls-Royce's £8.6bn aero-engine business employing 1500 staff. In service, blades experience massive loads and high-frequency vibration, creating the potential for failure. In response to blade-off events on the Trent™ 800 engine, Rolls-Royce (RR) urgently needed a means of inhibiting fatigue crack growth, and selected laser shock peening (LSP). Research in the UoA, elucidating the mechanism and outcomes of LSP, provided critical scientific underpinning for its introduction into the production process for the Trent™ 800 and, subsequently, other engines. Further the UoA now provides manufacturing process QA. Orders for the new Trent™ XWB engine, relying on LSP, exceed £60bn, with partners The Metal Improvement Company establishing dedicated LSP treatment facilities for RR in the UK (with 30 employees) and Singapore.
Our research has enhanced neutron diffraction instruments worldwide for strain measurements on industrial engineering components, moving the technique from a scientific to an engineering tool. We led the £3.5m consortium which designed and built the world's first neutron diffractometer optimised for engineering measurements (ENGIN-X at the UK ISIS neutron source). The Strain Scanning Software (SScanSS) we developed for experiment visualization, simulation and control vastly improved the utility of the instrument to execute engineering residual stress measurements in complex structures and is now adopted at eight facilities worldwide. Numerous multinational companies including General Motors, John Deere, Airbus, Tata Steel and Pacific Rail Engineering have used the methods from our research to support their development programmes.