Similar case studies

REF impact found 36 Case Studies

Currently displayed text from case study:

Energy-economic modelling of long term decarbonisation pathways: The policy impacts of the MARKAL-TIMES model family

Summary of the impact

The family of MARKAL-TIMES energy models have successively underpinned every major recent UK government energy policy document on long-term decarbonisation pathways. Enabled by the interdisciplinary critical mass of the UCL Energy Institute, a ground-breaking research programme by Strachan, Ekins et al has taken the UK's energy systems analytical capacity from near zero to world-class. Specific examples of policy impacts include assessment of decarbonisation costs in the DECC Carbon Plan, and the quantification of electricity sector decarbonisation as an essential enabling step to meet the targets set by the Committee on Climate Change (CCC) in the legally adopted UK carbon budget periods.

Submitting Institution

University College London

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Environmental

Research Subject Area(s)

Economics: Applied Economics

Creative Energy Homes: Low-Energy and Zero-Carbon Housing

Summary of the impact

A development of six Creative Energy Homes (CEH) on the University of Nottingham campus provides a living test-site for leading firms, including E.ON, David Wilson Homes, BASF, Tarmac, Roger Bullivant and Igloo Blueprint to work with the University of Nottingham to investigate the integration of energy efficient technologies into houses. As a result of this work, Lovell homes has won a number of sustainable housing contracts, Roger Bullivant have developed and installed 30 SystemFirst™ foundation systems and Igloo Blueprint have built £7M worth of new homes. The research findings have informed the UK Government's "Green Deal" strategy, the Nottingham Community Climate Change Strategy and received widespread acclaim through a number of public engagement activities reaching out to over 5 million people.

Submitting Institution

University of Nottingham

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Built Environment and Design: Architecture, Building

4. Radically improving built assets through reduced CO2 emissions

Summary of the impact

Alliance researchers have demonstrated that it is possible to refurbish existing buildings, which make up over 90% of our stock of over 26m buildings, to achieve a reduction in CO2 emissions of up to 80% (domestic properties) and 50% (non-domestic). The research has underpinned a shift of emphasis by UK government from new to existing buildings and the formulation of incentives to encourage building owners to make energy-saving improvements. In partnership with not-for-profit, public and private stakeholders, it has been used by national and local agencies to highlight the potential of improving the energy performance of traditionally constructed, timber-framed and residential mobile homes and incorporated into practical guidance by the Chartered Institution of Building Services Engineers. It is also the technical foundation for an educational software package developed with 100 school children and teachers and praised as exemplary by Education Scotland.

Submitting Institutions

University of Edinburgh,Heriot-Watt University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Built Environment and Design: Architecture, Building, Other Built Environment and Design

Climate Change Mitigation in the Built Environment

Summary of the impact

Research carried out at the University of Greenwich has explored issues surrounding sustainable living and climate change mitigation in existing buildings. The research identified the relationships between people and the built environment and developed a series of behavioural interventions to inform building users of the energy they were consuming and provide guidance on how this could be reduced. The socio-technical relationships were used in a public engagement programme to promote debate amongst the over-65s and the interventions by Registered Social Landlords to support behaviour change and reduce energy consumption in domestic buildings. The outputs have also been used to inform Social Housing policy development.

Submitting Institution

University of Greenwich

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Societal

Research Subject Area(s)

Built Environment and Design: Architecture, Building, Other Built Environment and Design

Intelligent Energy Management

Summary of the impact

Research at the University of Southampton, into the engineering of complex socio-technical systems, has underpinned new technologies in the area of intelligent energy management, and made Professors Nick Jennings and Alex Rogers trusted sources of advice for energy policymakers, key stakeholders and industrial researchers. The work has had an economic, environmental and societal impact: it has shaped R&D strategies of leading British companies like BAE Systems and Secure Meters; the launch of iPhone apps and websites have supplied private and industrial users with personalised data regarding their energy use, resulting in cost savings and reductions in carbon emissions; it has enabled charities to provide energy-saving advice to households directly; and has won an international technology showcase competition leading to a spinout and commercialisation of research.

Submitting Institution

University of Southampton

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Societal

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Engineering: Electrical and Electronic Engineering

Community Carbon Reduction

Summary of the impact

Roy Alexander's innovative research into climate change awareness and behaviour change has transformed the way the world looks at this issue.

It has enabled a Cheshire village to reduce its domestic carbon footprint by 20% and become an established model for communities across the globe. Dissemination of his research has reached around a billion people worldwide and stimulated the establishment of similar projects across the UK, and as far afield as Canada.

The award-winning initiative has influenced local and national government policy and attracted official visits from the Secretary of State for Defra, the Rural Advocate and Business in the Community.

Submitting Institution

University of Chester

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Societal

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Studies In Human Society: Policy and Administration

Shaping Energy Efficiency Policy - The Green Deal and Energy Saving Feed-in Tariffs

Summary of the impact

This research has demonstrated the shortcomings of recent changes to UK Government energy efficiency policy, and developed thinking about alternatives, in order to enable governments to provide an effective system of incentives for energy efficiency improvement. Such a system would allow energy sector decarbonisation at a lower cost than with supply side strategies alone. The analysis and concept have both had an impact. In the UK, the team of researchers have secured support from major environmental NGOs, have been included in a UK Government policy consultation, leading to the tabling of an amendment to the 2012 Energy Bill. Internationally, the team's research continues to influence leading policy analysts, including the Inter-Governmental Panel on Climate Change (IPCC).

Submitting Institution

University of Oxford

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Economic

Research Subject Area(s)

Built Environment and Design: Building
Economics: Applied Economics

1. Energy and Environmental Modelling at Building and Urban Scale

Summary of the impact

The Welsh School of Architecture (WSA) is recognised internationally for its research in developing advanced computational numerical models for simulating the energy and environmental performance of the built environment. These models have been used by leading design practices in the design of major buildings and urban developments. This impact case study presents three models from this research activity that have been widely taken up by industry worldwide, namely, the `building energy' model HTB2, the urban scale `energy and environment prediction' framework EEP and the `building environment' model ECOTECT.

  • HTB2 has been used by leading international practices in the design of over 100 exemplary low energy buildings, including Dubai's award-winning Lighthouse tower, and EMPA, the first zero energy office building in Switzerland.
  • EEP modelling framework for urban simulation has been used to assess the energy performance of existing large estates, for example, for use in housing retrofit programmes, and, to plan low-carbon developments, such as the Gateway City in Ras al Khaimer. It is now accessible through Google SketchUp, a common design tool used by architects.
  • Ecotect underwent significant development at the WSA before its sale to Autodesk in 2008, and by 2010 had over 2000 licenced users globally.

Application of the models, often linked (e.g. HTB2 is the numerical engine for EEP and is accessible within the ECOTECT framework), has resulted in extensive environmental benefits, through reductions in global CO2 emissions. Additionally, there has been a marked impact on practitioners and professional practices, through new guidelines for major international developments (e.g. Pearl Island Qatar and the Chongqing Ba'nan Low Carbon Development).

Submitting Institution

Cardiff University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Built Environment and Design: Building
Economics: Applied Economics

Estimating the ‘social cost of carbon’ to reduce US emissions and improve energy efficiency

Summary of the impact

The US government's announcement of an increase in the `social cost of carbon' (SCC) from $24 to $38 a tonne has been made on the basis of research by Richard Tol, of the University of Sussex. Regulation based on the new SCC (a measure of the damage of releasing an additional tonne of carbon into the atmosphere) initially applies to microwave ovens, where it is anticipated to save US consumers billions on their energy bills over coming decades and prevent 38 million tonnes of CO2 emissions. From June 2013, the new SCC applies to any new or revised regulation by any branch of the US government and will eventually affect a wide range of products and investments, including cars, white goods and power plants.

Tol, who works as an adviser to the US Environmental Protection Agency (EPA), has been instrumental in helping the agency to understand the economic impacts of climate change and the methods and assumptions that underpin SCC estimates. The US government's estimates of the SCC are widely used by other decision-makers in the private sector, banks and NGOs and in other countries.

Submitting Institution

University of Sussex

Unit of Assessment

Economics and Econometrics

Summary Impact Type

Environmental

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Economics: Applied Economics, Econometrics

Digital Environment Home Energy Management System (DEHEMS)

Summary of the impact

This case study describes the national and international impact of research undertaken by Professor Chao, as part of an EU funded Framework 7 project, Digital Environment Home Energy Management Systems (DEHEMS). The project has improved existing household energy monitoring, tackling the issues of global warming and CO2 emission reduction in the domestic sector. The research has directly contributed to the development of a product called EnergyHive, subsequently marketed by Small to Medium-sized Enterprise (SME) Hildebrand Ltd, who was the industrial partner in the DEHEMS consortium. The research has delivered the following:

  • Economic impact — as a direct result of the research project, Hildebrand Ltd has diversified and entered into an entirely new market;
  • Impact on the environment — home owners, local authorities and energy companies have installed EnergyHive meters which have shown significant energy and carbon dioxide reductions.

Beneficiaries of the research and the subsequent impact include: a commercial business, domestic energy consumers, UK and international energy companies and local authorities.

Submitting Institution

Coventry University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics, Information Systems

Filter Impact Case Studies

Download Impact Case Studies