Log in
Research into distributed optical fibre sensing undertaken at the Optoelectronics Research Centre (ORC) at the University of Southampton has had profound economic and environmental impact within the oil and gas industries in both extraction efficiency from existing reservoirs and improved safety performance and operation of three companies: Optasense, Stingray Geophysical and Schlumberger. Each of these companies have established highly competitive positions in the worldwide optical sensor market and collectively employ more than 160 people in the south of England, in their distributed sensing programmes having benefitted from the adoption of this new technology that contributes to the management of environmental risks and hazards.
Components built using 3D composite manufacturing methods developed by Cranfield are now flying on the Boeing 787 Dreamliner aircraft. This is the first use of structural composites in commercial aircraft landing gear. The prototypes were assembled and reinforced using robot automated technology developed at Cranfield.
Cranfield's work has extended the use of composite materials into critical landing-gear systems, allowing Messier-Bugatti-Dowty to contribute to the use of 50% composite materials for the airframe of the new 787, delivering weight reduction and better fuel economy.
Aston's fibre Bragg grating research on optical sensing has had a global commercial impact, in particular the development of low-cost fibre FBG sensor interrogation methods. The work has been carried out with a diverse range of companies (including BAE Systems, Airbus, Insensys, Schlumberger) working across different sectors including oil and gas aerospace and marine. Specific impacts include the acquisition of 70% of the stock of Insensys Wind for US$15.7 million by Moog in 2009 and continuing employment by Smart Fibres, Moog Insensys and Astasense.
Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.
Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.
Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.
This research has led to the creation of new business sectors in laser development for medical and healthcare applications, which has enabled the creation of a world-wide market worth US$96 million in 2011, and a local spin-out, Fianium Ltd, which now has more than 50 employees and an annual turnover of around £10 million. Exploiting a radically new optical component invented at the University of Southampton, the microstructured optical fibre (MOF), this research has led to economic benefit through the creation of hundreds of jobs worldwide, and enabled the development of new diagnostic and medical technologies.
Zinwave Ltd has introduced wideband distributed antenna systems (DAS) to the global marketplace, with systems deployed in Europe, the USA, Australia, China and the Middle East. Zinwave, a company founded to exploit the underpinning research, [text removed for publication] employs 25 staff. The first sales were recorded in 2008 and Zinwave's annual revenue has grown tenfold since then, [text removed for publication]. The Zinwave 3000 system is the only DAS on the market able to carry a wide range of wireless services on a single optical fibre and the company has built up a global network of more than 40 partners to integrate its systems, which are used in hospitals, stadiums, airports and power stations, among others. In 2012, Verizon, the USA's largest mobile operator, selected Zinwave to supports its 4G network rollout in the USA.
New commercial gas sensing technology developed from research at the University of Strathclyde brings extensive technical, operational, safety and cost benefits to applications such as mine safety and leak detection in methane production, storage, piping and transport systems. World-wide commercial sales (in Japan, China and the USA) began in late 2010 through a spin out company, OptoSci Ltd. Sales are growing and have amounted to a total of £250k since launch plus a customisation contract for £193k, leading to jobs sustainability and growth. In addition to economic impacts, the technology also brings health and safety benefits in the gas distribution and mining industries through human safety assurance in the event of gas leaks / build up.
The A350-XWB is the first Airbus airliner to have composite wings, thereby reducing structural weight compared with the current generation of metallic wings. With over 700 orders for the aircraft, the company has placed great emphasis on the need to maximise performance benefits whilst mitigating risk associated with manufacture of the all-new wing. The Bath Composites Research Unit has supplied underpinning research to:
(1) Develop an algorithm that has been used to design the composite wing skins for optimised performance;
(2) Analyse the laminate consolidation process for the wing spars.
The impact of (1) is a direct saving of 1.0 tonne of fuel per typical flight compared with current metallic skins. This represents a total fuel saving of around 40,000 tonnes, over the design life of each aircraft. The impact of (2) is the achievement of satisfactory part quality for current production rates of spars valued at £1M each when equipped.
Viewing carbon nanotubes (CNTs) as very rigid polymer molecules led to research on turning them into useful materials. Strategic investments to develop different aspects of this research have been made by two separate companies. A process for the synthesis of CNTs was transferred to Thomas Swan Ltd who have made significant investment, and are now Europe's leading supplier of high-quality CNTs. In 2003 a process was invented to spin CNT fibres directly from a synthesis reactor. The process is intrinsically cheaper than the conventional process for carbon fibre and it produces a tougher and more versatile product. The University of Cambridge (UCAM) spin-out company Q-Flo Ltd (created in 2004 to achieve focus on transfer of this technology) and Plasan (multinational manufacturer of vehicle defensive armour) formed a joint venture in 2010 which has enabled the first-stage scale-up of manufacture.