Log in
Impact on the environment
Economic impact
Impact on practitioners
The HOTFIRE collaborative research project (2004-2008) into advanced engine combustion systems led directly to a new, high specific power output, high fuel economy, low CO2 emissions turbocharged `down-sized' three-cylinder engine that was demonstrated in the Opel Astra car in 2008. The valuable new knowledge, understanding and techniques gained in the HOTFIRE project has directly contributed to the successful delivery of a major engine family project for an ASEAN region OEM client of Lotus Engineering.
This research project, carried out at the University of Derby, was used to develop an engine performance monitoring system and a data optimisation method for engine management systems for Land Rover. The project delivered two pieces of software developed for data modelling and optimisation with respect to the engine test bed. This has significantly reduced the engine test time on the test bed by up to 30%, reduced the cost of each engine test and provided optimum engine operation parameters to the Engine Control Unit (ECU), which has resulted in lower emissions and improved fuel economy. The project was started in 2000 and completed in 2008. However the outcomes of the research and developed software tools are still used by the Land Rover engine test group.
The research addressed the problem of improving the driver experience of the sound and vibration of their automobile operating under idle conditions in city traffic. As a result of the research, Shell Global Solutions UK developed and successfully adopted a test standard protocol that changed their R&D process for making diesel fuels. The research shifted the process of making fuels from one which were oriented to the product to one that was customer focused. The new test standard protocol and the vibration acceptability metric were also adopted by Ford Motor Company Ltd., Bentley Motors, BMW, Fiat, Ferrari, Jaguar Land Rover, Peugeot-Citroen and Renault.
Environmental impact
Implementing measures that can maintain, as well as improve air quality is a constant challenge faced by local authorities, especially in metropolitan cities. The AVERT, EPSRC/DTI link project, led by Samuel and Morrey of Oxford Brookes University, were tasked at identifying and proposing a new strategy to limit the amount of pollutants from vehicles dynamically using remote sensing and telematics. Firstly, it established the magnitude of real-world emission levels from modern passenger vehicles using a newly developed drive-cycle. Secondly, it demonstrated a broad framework and limitations for using existing on-board computer diagnostic systems (OBD) and remote sensing schemes for the identification of gross polluting vehicles. Finally, it provided a strategy for controlling the vehicle to meet air pollution requirements. The outcomes had direct impact on Government policy on "Cars of the Future", roadside emission monitoring, and the business strategies for both the Go-Ahead Group and Oxonica Ltd.
Improved measurement of fuel behaviour in automotive engines has contributed to the success of the AJ133 V8 engine, which powers over [text removed for publication] vehicles sold since 2009. The research, carried out at the University of Oxford in collaboration with Jaguar Land Rover (JLR), developed techniques to improve the understanding of combustion dynamics in engines and consequently enabled improvements to fuel consumption, emissions and engine reliability. Impacts include contributions to (1) JLR's improved engine design process and (2) improved fuel efficiency and thus lower emissions.
There have been both direct and indirect contributions to cost savings, reduced fuel consumption and reduced CO2emissions through Sussex research into gas turbine engine technology. Rolls-Royce and GE Aviation have benefited from experimental measurements that have allowed improvements to internal air systems flow modelling. This has led to savings in engine testing of approximately £10M over the period; indirectly it has also led to substantial economic benefits through reduced costs for engine manufacturers and their airline clients, and to improved design of internal cooling and sealing systems, which has direct impact on reduced fuel consumption and emissions.
Loughborough University's (LU) research collaboration with The Hardstaff Group has resulted in a commercial Oil-Ignition-Gas-Injection system (OIGI®), which substitutes natural gas for Diesel oil in heavy goods vehicles. Using optical diagnostics OIGI® was redesigned, increasing average substitution rates from 45% to 60%. The economic impact for Hardstaff was a fuel saving of £406k per annum. The research allowed Hardstaff to create new business with Mercedes-Benz in the UK and Volvo in Sweden. OIGI® reduces CO2 by up to 15%, harmful nitrogen oxides and particulate emissions by 30%. The research also demonstrated, for the first time, dual fuel technology in small, high-speed diesel engines, paving the way for its application in passenger cars.
A unified design methodology for tuning gas turbine engine controllers, developed by researchers in the Department of Automatic Control and Systems Engineering (ACSE), is being used by Rolls- Royce across its latest fleet of Civil Aero Trent engines. Trent engines are used to power, for example, Boeing 787 Dreamliner and Airbus A350 aircraft that have been adopted by the world's leading airlines.
This new methodology has made economic impact through the introduction of a new process for tuning gas turbine engine controllers leading to the adoption of a significantly changed technology. Indicators of impact are:
i) a new control law and design practice, resulting in a unified approach for different projects;
ii) reduced development effort by shortening and simplifying the design exercise and rendering it suitable for modular insertion; and
iii) streamlined verification requirements.