Log in
UCL research has been instrumental in creating critically needed new biocatalysts and bioprocess technologies for industrial biocatalytic process development. These have impact across the UK chemical and pharmaceutical sectors. BiCE enzyme technologies have been exploited through the formation of a spin-out company, Synthace, generating investment of £1.8m and creation of 7 new jobs. Commercial utilisation of BiCE enzymes by company partners has led to environmental benefits through sustainable syntheses and reduced waste generation. BiCE high-throughput bioprocess technologies have also been adopted to speed biocatalytic process development. UCL established a parallel miniature stirred bioreactor system as a new product line for HEL Ltd. [text removed for publication]. Related knowledge transfer activities have also benefited some 157 industrial employees from over 50 companies since 2008.
Impact: New business, technology, intellectual property and employment resulting from the invention and exploitation of a micro-scale laboratory device (ScreenTapeTM).
Significance: New business and technology commercialised resulting in sales of novel products worldwide, acquisition by Agilent Technologies Limited (Agilent) for £[text removed for publication] in 2011, product sales of over £[text removed for publication] to August 2013, generation of sustained employment for 50-160 people, major inward investment (£6M) by local investors followed by a US multinational.
Beneficiaries: The economy, commerce, employment, research and diagnostic laboratories, Agilent Technologies Inc. (Agilent).
Attribution: UoE Prof Peter Ghazal and Dr Douglas Roy inventors on granted patent, establishment of multi-disciplinary research in biochip medicine, collaborators with ex-Motorola engineers, co-founders of spin-out company for commercialisation of intellectual property.
Reach: Worldwide, including employment and product sales. Inward investment to UK.
The EKG technology developed by Newcastle has launched an entirely new spectrum of applications for geosynthetic materials and has resulted in changing established practice in civil, construction and mining engineering. The commercialisation of the technology, linking industry to applications of EKG products and processes, has been driven by the spin-out company Electrokinetic Limited. Amey, a leading international infrastructure services provider, incorporated the EKG technology into £1M projects for Network Rail and the Highways Agency in 2011-12. The end results were a 30% cost saving and 40% reduction in CO2 compared to established methods. The new range of EKG products has been recognised by British Standards, leading to the revision of BS 8006 for reinforced soil in 2010.
Research at Heriot-Watt University (HWU) has led to the development of a new continuous oscillatory baffled reactor and crystalliser technology. This has direct economic and environmental impact in the chemical, pharmaceutical and food industries. Waste is substantially reduced, while the scale of the equipment and plant is dramatically decreased, reducing time to market, start-up and maintenance costs and on-going energy usage. The reactor/crystalliser was taken to market through a spinout, NiTech Solutions Ltd, with a peak of 16 employees in the REF period. Genzyme (now Sanofi) has implemented NiTech's technology for biopharmaceutical manufacture since 2007, with multi-100 ton production and sales of multi-£100M pa. The technology now underpins the larger-scale joint venture, the Continuous Manufacture and Crystallisation (CMAC) consortium, launched in 2010. CMAC has attracted over £60M investment, much of it from three major industrial partners, GSK, AstraZeneca and Novartis, with additional second-tier investors. CMAC is accelerating the introduction of new process-intensification technologies in the process industries.
UCL's creation of ultra scale-down (USD) technologies has led to economic benefits by speeding to manufacture next-generation healthcare products. This has resulted in documented savings for pharmaceutical companies in pilot-scale studies (eg ~£280k for a protein therapy) and in manufacturing cost-of-goods (eg ~£200k pa for an antibody). Licensing values realised for USD-facilitated manufacturing processes range from a £10m early-stage payment for an antibody therapy [text removed for publication] to US$1bn for a therapeutic vaccine.
Since 2008 some 40 companies have used UCL USD technologies, which have now also facilitated the formation of a spin-out company and additional job creation. Patient benefits have emerged through the contribution of USD to better bioprocess definition, with USD technologies now helping deliver the US Food and Drug Administration's Quality by Design initiative for biopharmaceuticals, valued at more than US$20bn a year through a 25% reduction in time-to-market and more robust manufacture.
Economic impact is claimed through the growth of the biopharmaceutical spin-out company Q Chip Ltd. During the REF period, this has created 19 new jobs, £7.5M investment, a new Dutch subsidiary (Q Chip BV), and staged-payment, six figure contract sales to four major international pharmaceutical companies.
Q Chip has generated over £928K in contract sales from the pharmaceutical industry from 2008-2012, with further sales of over £1M projected in 2013-14.
Originally established by Professor David Barrow in 2003 from his micro technology research, Q Chip has developed new processes and miniaturised equipment to encapsulate materials, including drugs, within uniform polymeric microspheres as injectable therapeutics.
Research undertaken at the University of Cambridge Department of Engineering (DoEng) since 1998 on strategic technology management resulted in a principled and generalised method of creating roadmaps for technology and innovation management. This research was developed into a complete toolkit through case studies and consulting by the DoEng's wholly-owned subsidiary Institute for Manufacturing Education and Consulting Services Ltd (IfM ECS). Organisations in 26 countries commissioned over 115 consulting projects during 2008-13, benefiting through improved business performance and practices, the adoption of new technologies or processes and the better alignment of technology strategies with policy and commercial imperatives. IfM ECS's revenue from consulting, publications and events based on the research findings was GBP 3,479,758 in the period.
Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.
Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.
Basic research combining scanning probe microscopy with thermal, spectroscopic and chemical analysis has enabled the development of powerful, entirely new forms of analytical microscopy. Commercialisation of instruments for micro-thermal analysis began by TA Instruments, in 1998, based on four patents, followed by a Lancaster start-up company Anasys Ltd. These instruments have since been extensively used in multidisciplinary applications by scientific industry and government laboratories. Anasys has sold over 100 units of these nanoscale thermal analysis instruments (total turnover £3M) and many leading polymer industries, research institutes and academic programs worldwide are now users of this technology.