Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

4. Radically improving built assets through reduced CO2 emissions

Summary of the impact

Alliance researchers have demonstrated that it is possible to refurbish existing buildings, which make up over 90% of our stock of over 26m buildings, to achieve a reduction in CO2 emissions of up to 80% (domestic properties) and 50% (non-domestic). The research has underpinned a shift of emphasis by UK government from new to existing buildings and the formulation of incentives to encourage building owners to make energy-saving improvements. In partnership with not-for-profit, public and private stakeholders, it has been used by national and local agencies to highlight the potential of improving the energy performance of traditionally constructed, timber-framed and residential mobile homes and incorporated into practical guidance by the Chartered Institution of Building Services Engineers. It is also the technical foundation for an educational software package developed with 100 school children and teachers and praised as exemplary by Education Scotland.

Submitting Institutions

University of Edinburgh,Heriot-Watt University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Built Environment and Design: Architecture, Building, Other Built Environment and Design

Climate-proofing cities using urban greenspace

Summary of the impact

Urban greenspace cools cities and reduces rainfall runoff but these effects have been difficult to quantify. Ennos's research is the first to give realistic figures for the contribution of greenspace and assess its potential to climate-proof cities. Key research findings have furthered the concept of green infrastructure, influenced local and national planning policy [text removed for publication]. Novel mapping tools developed by Ennos have had international impact, including use in the city master plan for Addis Ababa, Ethiopia. Community forests have altered their planting practises as a result of Ennos's research findings.

Submitting Institution

University of Manchester

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Atmospheric Sciences, Physical Geography and Environmental Geoscience
Engineering: Geomatic Engineering

The adaptive model of thermal comfort and energy saving: understanding the interaction between humans and buildings

Summary of the impact

The Thermal Comfort Unit at Oxford Brookes University has, since its formation in 1992, been a world-leader in developing, applying and promoting the adaptive approach to thermal comfort and energy saving in buildings. Developed by Professor Humphreys and Professor Nicol, the adaptive model treats thermal comfort as a self-regulating system, placing human thermal behaviour at the centre of the system. The Unit, now part of the Low Carbon Building Group, has had a profound influence internationally on the way of thinking about comfort, and its research findings have been embodied in national professional guidance for building services engineers, influenced international standards bodies as well as developing global networks.

Submitting Institution

Oxford Brookes University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Built Environment and Design: Building, Other Built Environment and Design

Short

Summary of the impact

Research conducted by Professor Short in the use of natural ventilation and passive cooling in non-domestic buildings is altering policies and plans in the refurbishment of existing healthcare buildings and in new-build for acute and primary care, both within and outside the UK. Moreover, the massive demolition and replacement of healthcare building stock, presumed to be required to simultaneously adapt to the increased ambient temperatures due to climate change and mitigate carbon emissions through improved energy efficiency, has been shown to be unnecessary.

Submitting Institution

University of Cambridge

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering
Medical and Health Sciences: Public Health and Health Services
Built Environment and Design: Building

Adapting to the impact of climate change on Birmingham's urban heat island

Summary of the impact

Extreme heat events are likely to occur more frequently in a warmer future climate. Cities worldwide are concerned that the urban heat island effect will exacerbate the impact of climate change on urban populations and infrastructure. The UK government expects local councils to play a vital role in making sure the country is prepared for climate change. Birmingham City Council, the largest local authority in the UK, has worked in partnership with the University of Birmingham (UoB) in the BUCCANEER project (Birmingham Urban Climate Change Adaptation with Neighbourhood Estimates of Environmental Risk). The city has drawn extensively on BUCCANEER to design climate resilience into their city systems. The project has had public policy impact by informing the City's influential Green Commission and by being included in the City Council's new development Guidance — urban temperature change has become a mandatory factor to be considered for every new development requiring permission in the city. The guidance explicitly points developers towards BUCCANEER as the tool with which to consider this factor. A second public policy impact derives from the value of the tool for health planning: a significant proportion of the inner-city population is particularly vulnerable to extreme temperatures through age or ill-health and live where the heat island effect is shown to be largest. This aspect is now being increasingly employed by Public Health analysts and managers in the city. As a result of the city/university partnership, Birmingham has been recognised by the European Union as a Peer City and source of best practice for urban climate resilience.

Submitting Institution

University of Birmingham

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences
Environmental Sciences: Environmental Science and Management

1. Energy and Environmental Modelling at Building and Urban Scale

Summary of the impact

The Welsh School of Architecture (WSA) is recognised internationally for its research in developing advanced computational numerical models for simulating the energy and environmental performance of the built environment. These models have been used by leading design practices in the design of major buildings and urban developments. This impact case study presents three models from this research activity that have been widely taken up by industry worldwide, namely, the `building energy' model HTB2, the urban scale `energy and environment prediction' framework EEP and the `building environment' model ECOTECT.

  • HTB2 has been used by leading international practices in the design of over 100 exemplary low energy buildings, including Dubai's award-winning Lighthouse tower, and EMPA, the first zero energy office building in Switzerland.
  • EEP modelling framework for urban simulation has been used to assess the energy performance of existing large estates, for example, for use in housing retrofit programmes, and, to plan low-carbon developments, such as the Gateway City in Ras al Khaimer. It is now accessible through Google SketchUp, a common design tool used by architects.
  • Ecotect underwent significant development at the WSA before its sale to Autodesk in 2008, and by 2010 had over 2000 licenced users globally.

Application of the models, often linked (e.g. HTB2 is the numerical engine for EEP and is accessible within the ECOTECT framework), has resulted in extensive environmental benefits, through reductions in global CO2 emissions. Additionally, there has been a marked impact on practitioners and professional practices, through new guidelines for major international developments (e.g. Pearl Island Qatar and the Chongqing Ba'nan Low Carbon Development).

Submitting Institution

Cardiff University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Built Environment and Design: Building
Economics: Applied Economics

Adapting to the impact of climate change on Birmingham's urban heat island

Summary of the impact

The government expects local councils to play a vital role in making sure the UK is prepared for climate change. Birmingham City Council, the largest local authority in the UK, has worked in partnership with University of Birmingham (UoB) researchers in the BUCCANEER project (Birmingham Urban Climate Change Adaptation with Neighbourhood Estimates of Environmental Risk). The city has drawn extensively on the tool developed from BUCCANEER to inform their approach to adapting city systems to the increased likelihood of extreme temperatures in the future. This is a particular risk to cities like Birmingham where the projected higher overall temperatures in the UK as a result of climate change would exacerbate the existing urban heat island effect and produce potentially-damaging consequences for inner city areas. The project has had public policy impact by informing the approach taken by the City's influential Green Commission and by direct inclusion in the City Council's new development guidance. Temperature change and the urban heat island have now become mandatory factors to be considered for all developments requiring permission and guidance explicitly points developers towards BUCCANEER as the tool with which to consider this factor. A second public policy impact derives from the value of the tool for health planning: a significant proportion of the inner-city population is particularly vulnerable to extreme temperatures through age or ill-health and live where the heat island effect is shown to be largest. This aspect is now being increasingly employed by Public Health analysts and managers in the City.

Submitting Institution

University of Birmingham

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences
Economics: Applied Economics

Urban Climate Risks and Adaptation Responses

Summary of the impact

University of Manchester (UoM) research has made a key contribution to adaptation planning strategy for urban climate change, at a range of scales. Impact was achieved via the generation of data, and the creation and refinement of tools and frameworks that offer a distinct geographical perspective and a means of generating local evidence on urban climate risks, vulnerabilities and adaptation potential. Proof of principle was established within Greater Manchester, with extensive and ongoing use of research findings to support urban adaptation. Subsequently, the research has guided additional localities, and contributed to national policy formulation. More recently, a number of cities — including on mainland Europe and the African continent — have used the research within local adaptation planning, and related green infrastructure policy and practice.

Submitting Institution

University of Manchester

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Studies In Human Society: Human Geography

2) Dynamic Insulation in Buildings

Summary of the impact

Ground-breaking research in the field of Dynamic Insulation (DI) at Aberdeen University has contributed to international efforts to combat climate change through the reduction of the carbon emissions associated with the heating, ventilation and air conditioning of buildings. Through the establishment of a spin-out company and the development of the world's first modular DI product, jobs have been created and developers have been able to use the first commercially available DI products and systems to meet strict new environmental targets. The success of such projects has led to greater public awareness of the issues around global warming.

Submitting Institution

University of Aberdeen

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering
Built Environment and Design: Building, Other Built Environment and Design

The Development of a Viable Low-Energy Alternative to Air Conditioning

Summary of the impact

Research at the University of Nottingham into the use of phase- change materials as a means for heating and cooling buildings has resulted in the development of COOL-PHASE®, a product which is sold by Monodraught ltd. The system was launched in 2008 and has been installed in 136 buildings in the UK. COOL-PHASE® underpins the long-term growth strategy for the company and Monodraught has invested in employing 3 new staff and £250k in capital expenditure to make the unit suitable for mass production.

Submitting Institution

University of Nottingham

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies