Log in
Low-cost wireless solutions beyond the technologies available previously and developed at Loughborough University since 2005 are used by IDC, and Sure, who integrate these technologies in several products and services so generating impacts in terms of:
The technologies have been deployed in a logistics distribution centre (ToysRUs), an automotive manufacturing process (Toyota), and a safety and security system (Sure).
University of Cambridge research on the principles of `sentient computing' led to the foundation of spin-out company Ubisense, which has grown into a leading location solutions company. By the end of 2011, Ubisense had 170 employees and was floated on AIM with a valuation of £38.6million. It serves customers such as BMW, Airbus, Aston Martin and the US Army. Deployment of the Ubisense Real Time Location System has improved production line accuracy and efficiency by up to 10%.
Mobile technologies and in particular mobile applications have become key drivers of the economy in many countries especially those that lack established communications infrastructures. Since 2003, the research team led by Professor Al-Begain has created both significant infrastructure and know-how that became the base for the creation of the £6.4million Centre of Excellence in Mobile Applications and Services (CEMAS) that is providing research and development to SMEs in Wales to increase their competitiveness. In the first three years since its inception 28 projects have been completed and 66 companies have received services.
The invention of a novel component-based model and approach for rapid distributed software development are the core research results for this case study. Using our methodology we have built a fully functional platform — the Grid Integrated Development Environment (GIDE) — which has been used for the development of user applications by several industrial partners. The main economic impact of our work is the new component-based development process resulting in much higher productivity and shorter development cycle. In addition, the four new international standards approved by ETSI provide impact on the wider professional community in the areas of grid and cloud computing.
Gateway technologies have enhanced the ability of end-users to engage with high-performance computing (HPC) programs on massively distributed computing infrastructures (DCIs) such as clusters, grids and clouds. The technologies are focussed on the needs of business, industry, organisations and communities; enabling them to extract added business and social benefit from custom high-value services running on a wide range of high-performance DCIs. Typically, such services are based on computational workflows tailored to specific business needs. DCIs may comprise resources already owned (eg. clusters) combined with resources rented on a pay-as-you- go basis (eg. clouds). Several companies and organisations worldwide are currently using the technologies.
From 2005, a body of research undertaken at the University of Essex has developed a novel debug support architecture for systems on a chip (SoC). This platform successfully addresses the challenge of debugging applications executing on SoCs with multiple processor cores. A system-centric architecture is used, which achieves substantial improvement in compression and requires dramatically less silicon real estate than existing state of the art applications. The research underpins `UltraDebug', which is commercialised via the spin-out `UltraSoC'. UltraSoC has attracted investment worth £5million (the majority coming from venture capital sources) and is currently working with PMC-Sierra to incorporate its innovative technology into PMC's next generation of storage controllers.
Lancaster University's pioneering research on Quality-of-Service (QoS) architecture has led to significant impact on the development of TETRA (Terrestrial Trunked Radio) — the digital radio standard used by emergency and public safety services globally. The route to impact was via UK projects on Mobile and Emergency Multimedia. It involved the transfer of QoS technology and know-how to HW Communications Ltd (HWC), a Lancaster-based SME. HWC became instrumental in developing the outcomes of our collaboration in TETRA's Multimedia Exchange Layer (MEX) standard and its specification for TETRA II (or TETRA Enhanced Data Services, TEDS) — a new version of TETRA that enables multimedia data services. MEX was adopted as a new clause in the TETRA II release in 2010. The impact is that vendors of TETRA equipment manufactured after 2010 can implement MEX in their products, thereby leveraging Lancaster's pioneering QoS research to enable applications to obtain the best possible level of service in a standardised way — which is absolutely crucial for the public-safety and related applications for which TETRA is being used.
A quiet technology revolution in the UK has been changing the way that police officers on the beat and hospital nurses access and record information, using handheld electronic notebooks that bring large time and cost savings. This revolution began as a University of Glasgow research programme and led to the creation of a successful spin-out company, Kelvin Connect. Acquired in 2011 by the UK's largest provider of communications for emergency services, Kelvin Connect has grown to 30 staff. Its Pronto systems are now in use by 10% of UK police forces and nursing staff in several UK hospitals.
This case study concerns the design and methodology adopted in the construction of high reliability (safety-critical and real-time) embedded systems, particularly as applied in the automotive and avionics industry. The key impact has been for the automotive and avionics industry to adopt a change in the way these systems are designed, leading to more reliable systems, faster time to market, lower production and verification costs, and lower maintenance costs.
The subject matter concerns the fundamental architecture of high reliability embedded systems. Specifically it is a paradigm shift in the theoretical design of the software and hardware from established event-driven architectures to novel time-triggered architectures developed at the University of Leicester (UoL). The novel paradigm is supported by a range of development tools, processor designs, and diagnostic/maintenance tools developed by a spin-out company, TTE Systems Ltd. Research was exploited commercially by TTE Systems Ltd to provide economic impact via software tools sales, consultancy services, bespoke product development, and training courses.
This impact case study delivers a sustainable approach to the provision of large-scale Cloud Computing resources, through an international research collaboration. Such a platform enables the widening of participation in Higher Education (HE) across nations, by transforming the provision of IT system resources. The transformation is achieved through the effective sharing and utilisation of flexibly reconfigurable computing resources, whilst reducing the impact upon global carbon emissions. Significantly, the international nature of this research has been recognised by considerable funding from both Chinese and UK agencies. Additionally, the creation of closer research links between international partners has resulted in industrial commercialisation.