Log in
The burden of endocrine disease and disorders in global societies is higher than ever before and The Institute for the Environment's (IfE) research labelling chemicals in everyday use as endocrine disrupting chemicals (EDCs) has been instrumental in closing a gap in chemicals regulation that previously left pregnant mothers insufficiently protected from exposures to endocrine disrupting chemicals that could cause irreversible damage to their unborn life. Key impacts are: a) regulation, leading to bans and restrictions on the use of specific chemicals; b) a European Parliament call to implement better health protection (procedure reference 2012/2066 INI) from EDCs; c) Development of regulatory frameworks and decision criteria for identifying and restricting the use of EDCs; and d) a global (UN) strategy and workplan to support the safe management of these chemicals and to reduce their health risks in developing countries.
Over the past two decades, researchers at the Institute for the Environment (hereafter, the Institute) at Brunel University have generated substantive evidence supporting the case for regulation of discharges of pharmaceuticals into rivers and estuaries throughout Europe and for improved sewage treatment, with significant implications for water quality, aquatic life and public confidence. Their research has led to improved sewage treatment in some countries and to changes in the European Water Framework Directive (WFD; the primary legislation for protecting and conserving European water bodies), such that regulatory limits for environmental concentrations of the contraceptive pill hormones, ethinylestradiol and oestradiol, are now included in River Basin Management Plans for 2015. In 2011, a Queen's Anniversary Trust Prize was awarded to Brunel University in recognition of the Institute's considerable success in translating this research into European policy, also influencing countries outside Europe.
Research on the environmental safety and toxicity of nanomaterials in fishes has had a global impact across both government and industry contributing to:
(i) Consensus building on biological effects allowing regulatory agencies/governments to make proper decisions on the hazard of nanomaterials to farmed fish and wildlife.
(ii) Critical evaluation of the internationally agreed process of toxicity testing to determine whether the current legislative test methods are fit for purpose and acceptable to the aquaculture industry.
(iii) Identification of national/international research priorities and policies via work with the OECD and the US Government.
(iv) Influencing government policy to support training and information for industry.
Biocatalysts provide unique activities that facilitate chemical transformations that are simply not possible using abiotic methods. Northumbria University researchers with expertise in enzymes and biocatalysis have provided biocatalysis services to the pharmaceutical, fine chemical, food and biofuels industries through our business facing innovation unit Nzomics. This has generated significant contract research, collaboration and licence agreements to companies, including the pharmaceutical company GlaxoSmithKline and the services-led company Almac. Biocatalysts produced as a result of Northumbria University research and technology transfer are sold worldwide and benefit business through their use in research and development activities, such as the production of intermediates in drug synthesis.
Plymouth University was the first to develop methods for identifying supercomplex `unresolved complex mixtures' of organic chemicals, including naphthenic acids. The chemicals are of particular environmental concern (e.g. in Canada because of their production during exploitation of the oil sands and globally as they result from spillages of petroleum such as in the Deepwater Horizon spill). The methods are now used by government agencies such as Environment Canada to monitor naphthenic acid pollutants. A consortium of international oil industries (e.g., BP, Chevron, Total) also now use Rowland's data to model oil pipeline blockage problems.
The safety assessment of drugs and other chemicals relies upon studies in experimental animals. Whilst these are useful surrogates, extrapolation to humans requires several assumptions. Professor Boobis led an international group under the auspices of the World Health Organisation (WHO), to develop a framework for the systematic and transparent assessment of such experimental data. Within this framework, the toxicological effect of a chemical is broken down into a series of intermediate steps, comprising a mode of action. This enables qualitative and quantitative comparison between experimental animals and humans. The framework has impacted on risk assessment policy both nationally and internationally, on product development, and on risk assessments of combined exposure to chemicals.
This case study concerns the impact of Plymouth University research relating to farmed fish diets, which led to changes to EU legislation with respect to two types of ingredients: animal proteins and probiotics. The impact of the reintroduction of certain animal proteins in farmed fish feeds (previously banned to protect human health) and to the authorization of a probiotic as a feed additive, involved industry investment in research, have reduced the environmental impact of farmed fishing, improved competitiveness, enhanced yield and quality and improved fish health and survival.
The European Union Cosmetics Directive (adopted in 2003) banned the use of animals for testing cosmetic ingredients and the final deadline for compliance was March 2013. The development of alternative methods of safety assessment was therefore essential to ensure both consumer protection and viability of the cosmetics industry. Our research has focussed on the development of computational alternatives to animal testing, including the identification of structural alerts that have been encoded into computational workflows to support toxicity prediction. These methods have delivered tools to the cosmetics industry in Europe and worldwide to enable them to comply with the directive and develop new products. Our findings have also been used to inform thinking and policy in Europe and to develop a new approach to the safety assessment of cosmetics.
In 2008-2009 the UK was subject to legal infraction proceedings at the European Court of Justice (ECJ) for allegedly failing to implement the European Union's Urban Waste-water Treatment Directive (UWWTD). Research by the Institute of Estuarine and Coastal Studies, Hull (IECS) for the Environment Agency (EA)/Defra provided evidence to the UK Government for its defence against these allegations. The research consisted of:
- literature/data reviews and collection and analysis of critical evidence from the Humber.
- co-ordinating workshops and convening an expert panel of sufficient authoritative academic opinion to counteract the European Court of Justice allegations.
In December 2009 the European Court of Justice ruled in favour of the UK. Our research therefore helped to save very significant, unnecessary capital investment in nutrient removal technology for sewage treatment nationally and in the Yorkshire and Humber region especially. The UK government thus avoided the possibility of major European Commission fines of up to €703,000 per day, or €256m per annum, for infraction of the Urban Water-water Treatment Directive [1].
Research and knowledge exchange led by Prof. Jefferies in sustainable urban drainage systems (SUDS) has driven the design and integration of SUDS into urban environments, into urban planning and everyday practice in the UK, Europe and worldwide. This research has contributed to the development of policies and established guidelines that have informed the set-up of operational and monitoring systems and the reduction of a training manual which is impacting widely on the sector (downloaded >40.000 times). Evidence gathered through this research has supported drainage policy nationally and now underpins important parts of urban infrastructure, improving environments and their resilience to flooding.