Similar case studies

REF impact found 4 Case Studies

Currently displayed text from case study:

Geomerics

Summary of the impact

A new company, Geomerics, was created as a spin-out from the Cavendish Laboratory. Geomerics now employs 22 full time staff, with offices in Cambridge, UK and Vancouver, Canada. Geomerics has pioneered a new business sector in selling lighting middleware technology, based on Cambridge research, to games developers. Customers include Electronic Arts, Square Enix and Take 2 (three of the five largest publishers) and licenses have been sold in Europe, North America, Japan and Korea. In 2011 the first game released using Geomerics software, Battlefield 3, became the fastest selling game in Electronic Arts' history, having sold nearly 20M copies.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

Benchmark Testing in High Performance Computing

Summary of the impact

High Performance Computing (HPC) is a key element in our research. The Particle Physics Group has accumulated expertise in the development and optimisation of coding paradigms for specific supercomputer hardware. Our codes are deployed on supercomputers around the world, producing high-profile research results. We have developed a simulation environment, BSMBench, that is, on the one hand, flexible enough to run on major supercomputer platforms and, on the other hand, pushes supercomputers to their limits. These codes are used by IBM and Fujitsu Siemens for benchmarking their large installations and mainframes. The third party company BSMBench Ltd has commercialised the usage of our codes for analysing and optimising HPC systems of small and medium-sized enterprises.

Submitting Institution

Plymouth University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Information and Computing Sciences: Computation Theory and Mathematics

Castep

Summary of the impact

CASTEP is a parameter-free and predictive quantum mechanical atomistic simulation code developed by Professor Payne in the Department of Physics at the University of Cambridge. CASTEP has been sold commercially by Accelrys since 1995, with more than 800 industrial customers using the package. As part of Accelrys' Materials Studio, it can be used by non-experts to determine a wide range of physical and chemical properties of materials. Companies can thus perform `virtual experiments' using CASTEP. As quantum mechanical simulations can be cheaper and more flexible than experiments, CASTEP invariably reduces costs and accelerates product development.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry, Theoretical and Computational Chemistry

String Theory and Particle Physics Reach a Contemporary Art Audience

Summary of the impact

Few scientists in the UK have done as much as Dr David Berman and Dr Ben Still to bring the latest ideas and results from string theory and particle physics research into the contemporary art world. In 2010, Berman established an artist-in-residence post at QMUL's Centre for Research in String Theory, with Turner Prize winner Grenville Davey the first artist to take up the residency. This collaboration led to Davey creating sculptural responses to the Centre's work on generalized geometry and the role of duality, which have been exhibited widely. Berman has also collaborated with conceptual artist Jordan Wolfson for a work at the Frieze Arts Fair, which won the prestigious Cartier Award in 2009. He has given talks at the Institute for Contemporary Art, the Royal College of Art, Tate Modern and the Core Gallery, and will be curating further exhibitions in 2014. Still has initiated award-winning collaborations with artists, creating diverse artworks that draw-on QMUL's experimental research on neutrino physics, which have been exhibited at numerous venues. This work has transformed the practice of artists and brought complex theories and conceptual ideas to audiences that may not have had much previous knowledge or interest in these areas. Attracting widespread media coverage in both the arts and science press, the work has encouraged greater public discourse around string theory and particle physics.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Physics

Summary Impact Type

Cultural

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Quantum Physics

Filter Impact Case Studies

Download Impact Case Studies