Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

ELEC05 - Developments toward low and ultra low voltage electron microscopy (CONFIDENTIAL)

Summary of the impact

Since the 1950s, when they were first developed, scanning electron microscopes (SEMs) have revolutionised science. However, the large physical size of these machines and their aggressive treatment of samples has limited their use. Now research carried out by Professor Mohamed El-Gomati has led to the development of products for global companies including Agilent, Carl Zeiss and Shimadzu. These products include the world's first low-voltage desktop SEM, capable of resolving features smaller than 5 nanometres, and handling radiation sensitive samples such as biological and medical materials, novel photoresists, nanotubes and nanorods. The smaller size has also improved accessibility of such instruments leading to significant efficiency gains for companies and academia worldwide.

Submitting Institution

University of York

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering, Interdisciplinary Engineering

Medipix - High Energy Physics collaborators deliver technological breakthrough behind world’s most advanced X-ray detector

Summary of the impact

Medipix-based detectors are the best pixelated X-ray detectors available on the market and are commercialised by PANalytical under the brand name PIXcel. At the core of PIXcel is the Medipix2 chip, which was developed around a photon counting breakthrough conceived by the Medipix collaboration and is unique in its adaptability, high spatial resolution, high dynamic range and low noise. This product is the direct result of an exclusive license and a collaboration agreement between PANalytical and the Medipix collaboration, coordinated by CERN and comprising a further sixteen leading physics research institutes in Europe. The University of Glasgow is the only UK institution to be one of the four founding members of the Medipix1 collaboration.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing

Enabling SEMATECH and industrial member companies to improve their transistor technology

Summary of the impact

Researchers within the Department of Physics and Astronomy at UCL have investigated the properties of defects in bulk HfO2 and at Si/SiOx/HfO2 interfaces. Results have been used by an industrial partner, SEMATECH (SMT), to improve the quality and reliability of high-performance microelectronic devices based on transistors. This has helped SMT to meet project objectives on behalf of member companies such as Intel and IBM, and UCL research results have been consistently highly evaluated by these companies. Recommendations made by SMT have been implemented by industrial partners in their currently manufactured devices, such as the 22nm process technology released by Intel in 2011.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Castep

Summary of the impact

CASTEP is a parameter-free and predictive quantum mechanical atomistic simulation code developed by Professor Payne in the Department of Physics at the University of Cambridge. CASTEP has been sold commercially by Accelrys since 1995, with more than 800 industrial customers using the package. As part of Accelrys' Materials Studio, it can be used by non-experts to determine a wide range of physical and chemical properties of materials. Companies can thus perform `virtual experiments' using CASTEP. As quantum mechanical simulations can be cheaper and more flexible than experiments, CASTEP invariably reduces costs and accelerates product development.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry, Theoretical and Computational Chemistry

1. The impact of the floating low-energy ion gun (FLIG) on the consumer electronics industry

Summary of the impact

This case study describes the invention, development and subsequent commercial application of the floating low-energy ion gun (FLIG), a key enabling technology for high-resolution depth profiling, in particular of semiconductor devices. Following its invention at the University of Warwick, the FLIG was commercialised and now plays an important role in the semiconductor industry as a key analytical instrument. Intel and its competitors have used the FLIG in developing specific technologies, such as the PentiumTM, XeonfTM and CoreTM i7 processors. Its impact extends beyond the electronics industry to consumers worldwide since the FLIG has played a key role in the development of multicore processors for personal computers, intense low-energy lighting for automotive and civil engineering, mobile telecommunications technology, and many other areas of advanced electronic, and other material, technologies. This invention has also led directly to an ISO standard for depth resolution.

Submitting Institution

University of Warwick

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)

Next-Generation Airport Baggage Scanners Revolutionising Passenger Security Checks

Summary of the impact

Radiation physicists at the University of Surrey developed a unique X-ray imaging technology for high-speed real-time tomography (RTT) during 1997 to 2005. The originating research developed new X-ray methods for tomographic imaging of multiphase flow in pipes. RTT was then applied to security X-ray imaging, specifically the high-speed screening of aircraft passenger baggage. As a direct result of the research, a spin-out company from the University, CXR Ltd, was formed, and it was later acquired by Rapiscan Systems.

Surrey's imaging technology is now approved for use for automated explosives detection in the European aviation sector. In 2009, a prototype high-speed baggage system was trialled at Manchester Airport, which resulted in certification in 2012. The research has made a significant economic impact by leading to technology that created jobs in a purpose-built factory.

Submitting Institution

University of Surrey

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Technology: Communications Technologies

CPO software package for designing charged-particle optical systems

Summary of the impact

A software package called CPO has been developed that simulates the motion of charged particles in electromagnetic fields. More than 200 benchmark tests have established CPO as the gold standard in low-energy charged-particle optics. A spin-off company was formed to market CPO, [text removed for publication]

Submitting Institution

University of Manchester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Innovative products for microscopy and analysis provide economic and healthcare benefits in a wide range of industries

Summary of the impact

Research at the Interface Analysis Centre (IAC) has made innovative analysis products available in a wide range of industries and research fields.

  • The design of a novel SEM-Raman instrument has resulted in multi-million pound sales for Renishaw PLC.
  • Rolls-Royce PLC has commissioned and used bespoke instruments and non destructive examinations to maintain its competitive advantage and is modifying its technical processes to incorporate these into its standard manufacturing and maintenance procedures.
  • In healthcare, work on Raman probes for cancer detection has influenced support of innovation in the NHS.
  • Two companies have been formed to develop and market computer control and data acquisition and analysis systems conceived in the course of this work.

Submitting Institution

University of Bristol

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Good Vibrations: Advancing the Cause of Energy Harvesting

Summary of the impact

The University of Southampton's pioneering research into energy harvesting has produced proven economic impacts together with impacts on public policy and international standards. Perpetuum, a spin-out from Southampton employing 10 people locally, has attracted £9.6 million in venture capital and developed the world's leading vibration energy harvester. Perpetuum's harvesters are enabling the deployment of zero maintenance, battery-free wireless systems in the rail industry where the technology has revolutionised bearing monitoring. This has enabled, for the first time, real-time monitoring of rolling stock, leading to cost savings, improved reliability, efficiency and safety. Their systems have been deployed on 200 trains across the UK (Southeastern) and Sweden (SJ AB). Southampton's research has driven wider industrial uptake of the technology and Perpetuum's is also the only energy harvester approved for use with the worlds leading suppliers of wireless condition monitoring equipment (GE Bentley Nevada, National Instruments and Emerson). Promotion of the technology has led to a £1.25 million TSB competition on energy harvesting and Southampton researchers are assisting in the development of international standards and increasing public awareness of the technology.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Materials Engineering
Technology: Communications Technologies

Millimetre wave Instrumentation for High Field Electron Paramagnetic Resonance

Summary of the impact

Impact: Economic and societal
The Millimetre Wave and Electron Paramagnetic Resonance (EPR) group has developed internation-ally award-winning instrumentation, and associated components that have been produced commercially by Thomas Keating Ltd. They have also led a pio-neering public understanding programme (PUP).

Significance: Thomas Keating have developed a range of new product lines serving > 20 international customers including [text removed for publication] of recent orders. The PUP has reached ~82 000 at-tendees.

Reach: Systems have been sold internationally and PUP has developed into specific exhibitions at a range of science centres.

Attribution: The work has been led by PHYESTA Researcher Dr Graham Smith

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies