Log in
Research by Rowan and ERG colleagues Black, Bragg, Cutler, Duck has addressed the science and policy challenges faced by statutory authorities meeting their duty to implement the EU Water Framework Directive (WFD) 2000. Assessing the sensitivity of aquatic systems to physical, chemical and biological pressures is the central theme, and through a series of commissioned projects funded by UK environment and conservation agencies, the research has:
For over 40 years, the Urban Pollution Research Centre has undertaken pioneering work in understanding the sources, behaviour and fate of urban diffuse pollution and its mitigation using sustainable urban drainage systems (SUDS). Relevant impacts claimed here include the adoption of SUDS into UK practice and legislation, the role of SUDS as key components in achieving EU Water Framework Directive (WFD) requirements and the embedding of our research within national best practice guidelines. In response to recent policy drivers, we are collaborating with Arup to commercialise SUDSloc and are informing policy developments in the fields of diffuse pollution mitigation and urban ecosystem services.
Good quality water is essential for life on earth. The `Centre for Intelligent Environmental Systems' (CIES) has developed computer-based solutions for the assessment of river water quality by environmental agencies, working to improve the quality. CIES research has informed discussions and decisions of the UK Technical Advisory Group for the Water Framework Directive (UKTAG WFD). UKTAG WFD have selected the WHPT (Walley, Hawkes, Paisley & Trigg) method, for assessing river water quality throughout the UK, in the context of river management to meet the targets set in the Water Framework Directive (Directive 2000/60/EC from the European Union), which the UK government signed up to in 2000 (Beneficiaries: UKTAG WFD; Environment agencies; The public). Indirect impacts can also be attributed to CIES research, as it enables improvements of river quality, which triggers positive impacts on the natural environment, public health and quality of life (Beneficiaries: The public). CIES software has also been released to environment agency biologists as second opinion tools, thereby resulting in improved delivery of the public service provided by these biologists, when they use the software (Beneficiaries: Environment agencies; Environment agency biologists; The public).
Research undertaken by Professor Phil Jordan on nutrient pollution from land to waters has led to significant changes in government policy and in expectations for Water Framework Directive (WFD) and Waste Directive (WD) compliance in Ireland. The WFD is European wide legislation requiring that all water-bodies should be of at least good ecological status by 2015. His research has provided unequivocal scientific evidence that bio-physical lag times preclude the achievement of WFD water quality targets from diffuse source pollution by 2015. This has led to targets for good water quality in all River Basin Management Plans being extended without threat of European fines. Further, inclusion of Jordan's research on the specific environmental risk of rural point source pollution in assessments of septic tank system risk has resulted in the overturning of a European Court ruling under the Waste Directive, and the consequent lifting of daily fines of €19,000.
Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.
In 2008-2009 the UK was subject to legal infraction proceedings at the European Court of Justice (ECJ) for allegedly failing to implement the European Union's Urban Waste-water Treatment Directive (UWWTD). Research by the Institute of Estuarine and Coastal Studies, Hull (IECS) for the Environment Agency (EA)/Defra provided evidence to the UK Government for its defence against these allegations. The research consisted of:
- literature/data reviews and collection and analysis of critical evidence from the Humber.
- co-ordinating workshops and convening an expert panel of sufficient authoritative academic opinion to counteract the European Court of Justice allegations.
In December 2009 the European Court of Justice ruled in favour of the UK. Our research therefore helped to save very significant, unnecessary capital investment in nutrient removal technology for sewage treatment nationally and in the Yorkshire and Humber region especially. The UK government thus avoided the possibility of major European Commission fines of up to €703,000 per day, or €256m per annum, for infraction of the Urban Water-water Treatment Directive [1].
Research by the University of Southampton into river processes and restoration has contributed significantly to the adoption of fluvial geomorphology as a tool for river management. The research quantified for the first time, the cost of sediment management in rivers to the UK economy and environment, arguing that improvements could be achieved by applying fluvial geomorphology. The research developed new evidence, tools and training that were adopted by river management agencies and consultants for the scoping, assessment and planning of projects. This has resulted in cost-savings through reduced river maintenance, improved river environments, and the creation of a new employment market for graduates with geomorphological training.
New approaches to analysing and modelling water systems, developed at Cardiff, have driven national policy changes to improve the proportion of fully functioning water ecosystems in the UK. UK Government, Welsh Government and a range of NGOs have adopted these new approaches, which replace traditional descriptive methods with experimental, analytical and modeling techniques for understanding water ecosystems.
These approaches have been used to develop the water-related component of the National Ecosystem Assessment. This document has directly impacted on UK river management policy, forming the basis of two Defra White papers, `Natural Choice' and `Water for Life', underpinning Welsh Government's Natural Environment Framework and informing the work of a range of NGOs.
The primary mission of the Centre for River Ecosystem Science (CRESS: http://www.cress.stir.ac.uk/index.html) is to build and translate scientific evidence into advice to end-users and policy makers in river management, both nationally and internationally. Site-based advice, design and monitoring have been provided to 55 projects, including award-winning river engineering schemes. Independently, our research in community ecology, fluvial geomorphology and agricultural pollutants has supported an outstanding contribution to the UKs response to the key EU Environmental Directives — Water Framework, Flooding, Species & Habitats and Bathing Waters. We have developed the official tools that are now used to determine the status of freshwaters and structure catchment management plans, and trained others in their use, have pioneered risk assessments and modelling of nutrient, pathogen or carbon losses, publicised their effects, scoped mitigation options though engaging with end-users, and steered the pan-European comparison of bio-assessment methods that now underpins common water policy.
DPU's research by Davila, Allen et al into urban infrastructure has generated analytical tools used by policy-makers, practitioners and aid organisations to examine the distribution of and access to urban services. It has supported the development of training curricula used altogether by over 4,000 urban planners in cities of the Global South, and through partners in The Netherlands, India and Colombia. At the policy level, the research has informed local government actors in Colombia, and international bodies (e.g. UN-Habitat and the International Resource Panel) in planning, financing, monitoring and equitable delivery of infrastructure services. At the NGO level, new analytical approaches have been adopted by WaterAid in Mozambique, Nigeria, Zambia, and the Democratic Republic of the Congo as a result of DPU research.