Log in
XMaS is a dedicated materials science beamline at the European Synchrotron Radiation Facility (ESRF). It develops and disseminates novel instrumentation and sample environments that allow new experiments which support emerging technologies. By commercialising the intellectual property through licenses to companies economic impact is derived directly. Further economic impact is facilitated through knowledge transfer by trained people and expertise in new processes, which enhances the capability, capacity and efficiency of other central facilities. Public interest and awareness are engendered through individual research projects being highlighted in the media and through people's skills and experience being utilised in a broad range of sectors.
This case is primarily based on the economic benefit derived from commercialisation of intellectual property arising from our research programme in materials at the XMaS beamline at the European Synchrotron Radiation Facility at Grenoble. The company Huber Diffraktiontechnik GmbH and Co. KG have had direct commercial benefit from exploitation of instrumentation we have developed, in collaboration with Warwick University, to address the specific research challenges described below. A second, indirect, impact of XMaS is knowledge transfer through the career progression of trained specialists in positions at other large scale science facilities and in the private sector.
Keele University has made sustained and seminal contributions to the development and use of central facilities (Synchrotron radiation, Neutron scattering) which started over 30 years ago and are still in progress today. Past and present academics at all levels from Keele who began this work have gone on not only to carry out their own ground breaking research using these facilities but, in many cases, to have a major social, economic and industrial impact, through key roles in development, support and techniques and through the present, current and next generation of scientific, management and technical expertise at Central Facilities around the world. This includes numerous postgraduate students, Research Associates and academic staff. The contribution to Science and Technology has enabled significant breakthroughs in many aspects of science and medicine, accompanied by direct economic and social impact and a unique and ongoing contribution to the current generation of SR and neutron sources, their scientific staff and their users.
The EKG technology developed by Newcastle has launched an entirely new spectrum of applications for geosynthetic materials and has resulted in changing established practice in civil, construction and mining engineering. The commercialisation of the technology, linking industry to applications of EKG products and processes, has been driven by the spin-out company Electrokinetic Limited. Amey, a leading international infrastructure services provider, incorporated the EKG technology into £1M projects for Network Rail and the Highways Agency in 2011-12. The end results were a 30% cost saving and 40% reduction in CO2 compared to established methods. The new range of EKG products has been recognised by British Standards, leading to the revision of BS 8006 for reinforced soil in 2010.
Durham Chemistry has a long history of research in cutting edge crystallographic methods and innovative instrument design which has led to the commercialisation of scientific apparatus and software with significant sales value. Durham-developed apparatus and crystallographic software are used globally by both industry and academia. Autochem2, for example, is sold exclusively to Agilent via the spin-out company OlexSys, and hundreds of researchers rely on Durham's contributions to the Topas software pacakge. Crystallographic research for pharmaceutical and other companies, research-based consultancy, commercial analytical services and provision of international PhD+ level training schools have led to further significant impact.
Research during the 1990's at Newcastle University resulted in the development of CANopen (Control Area Network open), a manufacturer independent communication protocol for connecting multiple devices used in industrial systems. It has resulted in opening up the market by providing the platform for a low-cost simplified method of connecting off-the-shelf devices to communicate effectively over a network, benefiting the global economy and inspiring innovation. The significance of the impact is evident by the wide incorporation of the technology in a diverse range of products ranging from health care, automotive, renewable energy, rail and aerospace industries. The reach of the impact is evident by its use in product development by national and international companies and is the de-facto European standard EN 50325-4 (CiA 301).
Newcastle University has a substantial background in researching novel control methods for electric motors. This case study concerns the impact that our work on sensorless control systems has had upon Dyson consumer products.
One of our sensorless control schemes has been adopted by Dyson for their vacuum cleaner drive systems offering benefits of ruggedness, flexibility and being inexpensive to implement, leading to reduced production costs and improved ergonomics derived from the ability to eliminate bulky sensor components and separate control electronics from the motor.
Dyson has invested £5M in a new production line for products using this sensorless control system which have production volumes of around 5 million units per annum. The Company estimates the cost savings accruing from the use of our designs at around £2M per annum.
Metamaterials deliver electromagnetic properties not available in natural materials. Transformation optics replaces the ray picture of Snell's law with the field lines of Maxwell's equations and is an exact description of classical optics. These powerful concepts, originally developed by Prof John Pendry, have engendered massive interest in the electromagnetic community encompassing radio frequency (RF) through to optical applications. His advice is sought by numerous companies and these concepts are now filtering through into products. In the last 5 years there has been great involvement of industry and particularly of the defence establishment in the USA who run several multi mullion dollar programs on metamaterials based at DARPA, WPAFB and Sandia. A company, KYMETA, was formed in 2012 to market this technology with $12M of investment funding, and is developing a laptop-sized antenna that gives instant Internet hotspot access anywhere in the world, with an ultimate application allowing cheap and fast Internet connections for the everyday consumer. In the UK, BAE Systems is using metamaterials for several applications including compact, directional antennas.
Newcastle University's fundamental research into the automated synthesis of asynchronous systems and metastability analysis has resulted in new technologies that have been adopted worldwide by the microprocessor industry and educational sectors. In particular, Newcastle's asynchronous design methods and tools based on Petri nets have been used by the industry leading vendor Intel Corporation for their switch silicon technology, on which most transactions on the NYSE and NASDAQ (with combined daily volume of trade exceeding £80 billion) now rely. Oracle Corporation used the results of Newcastle's metastability analysis research for building their SPARC series of servers, marketed as having "world's fastest microprocessor".
Research at Newcastle University on formal methods for the design of computing systems has had a major impact on the delivery of new high-dependability products by industry. The methods (VDM and Event-B), to which we have made significant contributions, have been embodied in tools (VDMTools, Overture, Rodin) and applied in industry. The reach of the work extends to industries in Europe (e.g. in the rail sector by Siemens, 2011) and Japan (e.g. in firmware design by Sony, 2008). Significance is seen in reported improvements in defect detection rates of up to a factor of 5 over previous processes and the cost-effectiveness of design processes. The "Mobile FeliCa" chip developed using VDMTools is now incorporated into over 200 million mobile phones worldwide. Our approach to disseminating research has engendered lively international and online end-user communities further developing and using the tools today.