Similar case studies

REF impact found 10 Case Studies

Currently displayed text from case study:

Economic and health benefits of novel light therapies for the treatment of skin conditions.

Summary of the impact

Research at Swansea University on light therapy has contributed to an extensive market in laser and intense pulsed light (IPL) products for the therapeutic and cosmetic treatment of skin conditions. Impacts include: globally registered intellectual property; local manufacturing of a wide range of laser and IPL products; their distribution to over 40 countries; and resulting benefits to health in treating acne, rejuvenating skin and removing hair. The research undertaken by Swansea University and its companies pioneered this market in partnership with Procter & Gamble and Unilever; and established a joint venture with Sony UK to manufacture these laser and IPL products in South Wales. The Welsh government views this collaboration as an exemplar for the resurgence of UK specialist manufacturing.

Submitting Institution

Swansea University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Technology: Medical Biotechnology
Medical and Health Sciences: Neurosciences, Pharmacology and Pharmaceutical Sciences

Improved work productivity and enhanced health and wellbeing through novel lighting systems

Summary of the impact

Circadian rhythms impact upon a large proportion of human biology. Disruption due to genetic or environmental (e.g. altered sleep patterns in shift workers) cues results in reduced quality of life and increased morbidity for millions of people every year.

Researchers at Surrey first demonstrated blue light sensitivity of the human circadian system, resulting in increased alertness and mood. This led to changes in international lighting standards and the development and use of novel lighting systems, such as blue-enriched polychromatic lighting. These systems have been employed in homes for older people, factories, offices, hospitals and schools, increasing health and wellbeing.

Submitting Institution

University of Surrey

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Neurosciences
Psychology and Cognitive Sciences: Psychology

A Wearable Light Source for Ambulatory Treatment of Skin Cancer and Acne

Summary of the impact

Impact: Health and Economic Gains:

Research has led to a wearable light source that provides a new way of treating many skin cancers and acne. The treatment is safe, convenient, and easy to use bringing benefits to patients and healthcare providers. In addition it brings economic benefits to Ambicare Health Ltd, the company commercialising it.

Significance

For skin cancer treatment, the device gives effective treatment with much reduced pain. The simplified treatment procedure allows more patients to be treated in a clinic session. For acne, the device provides a convenient at-home treatment without the application of drugs or chemicals.

Beneficiaries:

Skin cancer and acne sufferers, the clinics that treat them and Ambicare Health Ltd.

Attribution:

The work was led by Professor Ifor Samuel (PHYESTA) working with Professor James Ferguson (Ninewells Hospital, Dundee).

Reach:

The wearable light source has changed treatment in the UK and the Netherlands. The skin cancer treatment is in regular use at more than 25 clinics, and the acne treatment at more than 250 clinics.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Technology: Nanotechnology

Reduction in UK carbon emissions through use of white light for street lighting

Summary of the impact

Research by Raynham et al has led to the adoption of white light in residential roads and city centres throughout the UK, enabling an energy saving of 30-40% while providing better quality of street lighting. As a result, today there are now c.1,200,000 conventional street lights with white light sources and a further c.220,000 LED lanterns that emit white light. Conservative estimates suggest that this changeover to white light saved 113 GWh of electricity in 2012, and thus reduced the UK emissions of CO2 by 45.5 megatons.

Submitting Institution

University College London

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Public Health and Health Services

Re-designing artificial lights to suit our biological needs

Summary of the impact

Regulation of our sleep-wake cycle is crucial to health and well-being. The quality (intensity and spectral distribution) of artificial light is currently described according to its ability to activate rod and cone photoreceptors in the human eye. This approach ignores the discovery of a third photoreceptor that Lucas and his group have shown to be responsible for a range of sub-conscious neurophysiological and neurobehavioural responses to light, which together strongly contribute to health, productivity and well-being. Their research has established ways of measuring light that predict its effect on these newly discovered photoreceptors. They have partnered with industrial [text removed for publication] and public policy (various) organisations to translate this knowledge into improved artificial light sources and updated international standards for architectural lighting, for use in a wide range of domestic, public and industrial settings.

Submitting Institution

University of Manchester

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Physiology
Medical and Health Sciences: Neurosciences

1 Accelerating the development of new chemotherapy drugs using bioluminescent bacterial biosensors

Summary of the impact

Novel bioluminescent bacterial biosensors developed at UWE, Bristol, and commercialised by Randox, have been used by a range of companies to demonstrate effectiveness of drugs and decontamination procedures. This has improved development processes at companies including Clavis Pharma, Purest Solutions and Dycem, leading to new manufacturing processes and quality control test methods. The biosensors are used in novel applications to give pharmacodynamic data on effectiveness of drugs and real time in-situ demonstration of effectiveness of decontamination processes. These biosensors, pioneered and developed by Vyv Salisbury's group, have been commercially adopted and used for evaluation by at least six collaborating companies.

Submitting Institution

University of the West of England, Bristol

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Medical Microbiology

Photonic crystal LEDs

Summary of the impact

Implementation of photonic quasi-crystals on light emitting diodes (LEDs) can produce more light using less energy. This technology was brought to the global market via the successful commercialisation of laboratory devices derived from research in nanophotonics and the subsequent development of photonic quasi-crystals by a multi-disciplinary team from the University of Southampton. The intellectual property of the technology was acquired and adopted in 2008 by Luxtaltek Corporation, a global manufacturer of LEDs. In the period 2008-2012 Luxtaltek Corporation, made total profits of £35 million utilising the photonic quasi-crystal LED technology, employing more than 300 people in its production facilities.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Materials Engineering
Technology: Communications Technologies

Light-emitting Dendrimers

Summary of the impact

Impact: Economic
The light-emittingdendrimers are a new class of materials for organic light-emitting diodes, a major display technology. They have been commercialised by Cambridge Display Technology (CDT), the leading developer of polymer light-emitting diodes.

Significance
Light-emitting dendrimers provided a breakthrough in the efficiency of organic light emitting diode (OLED) materials deposited from solution. This enabled the convenience of solution-processing to be combined with high efficiency, and enabled solution-processed materials to compete with evaporated materials.

Beneficiaries
CDT, display manufacturers around the world and display users.

Attribution
The research was performed by Professor Samuel in collaboration with Professor Burn of the University of Oxford.

Reach
Materials based on light-emitting dendrimers are manufactured by Sumitomo Chemical in Japan and supplied to global displays manufacturers.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Organic solid state lighting: building a full commercial supply chain in the UK (Polymer Lighting)

Summary of the impact

Interdisciplinary research on a new class of organo-metallic light emitting polymers showed that they could produce white light very efficiently. A consortium of the University and Industry (predominantly Thorn Lighting, the largest lighting manufacturing employer in the North East) developed and patented these into a viable alternative to mercury vapour fluorescent lights with a £4.3M grant from the DTI with matched funding from industry. The companies are investing in scaling this up to a full commercial supply chain, supported by a £4M grant from the Technology Strategy Board. The success of the project helped BIS secure £20.5M to support Plastic Electronics in the UK, creating 26 jobs, and was cited as a factor in the Thorn decision not to close down its North East site, safeguarding 600 jobs.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Inspiring successful sales strategy of a global healthcare company

Summary of the impact

Natural photonics research by Professor Pete Vukusic at the University of Exeter was responsible for shaping the successful global communications strategy of Bausch & Lomb, a world-leading supplier of eye health products. Drawing on Vukusic's studies into bio-inspiration, Bausch & Lomb built its core brand messaging for a major new lens product around the ability of nature to inspire technological breakthroughs. Outreach campaigns targeting media and optometry professionals took Vukusic's research to an international audience, raising wider public awareness of the concept of bio-inspiration. Bausch & Lomb attributed their subsequent rapid sales growth to Vukusic's work.

Submitting Institution

University of Exeter

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies