Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

UK and Ireland benefit from improved assessment of water quality in rivers and lakes using new diatom-based tools

Summary of the impact

A team at Bristol University has played a central role in the development of new methods for assessing water quality in rivers and lakes. These are making it possible for the water industry to more reliably assess water quality and identify sites where remedial measures must be applied to meet the new standard of `good ecological status' as required by the European Union Water Framework Directive (WFD), which passed into UK law in 2003. The innovative, diatom-based tools were used in 2008 and 2009 to assess all targeted surface waters (rivers and lakes) in the UK and Ireland, leading to massive investment in infrastructure. This has opened up the prospect of higher quality water in lakes and rivers - something that the public and environmental organisations demand. Over the next few decades, the investment will bring an estimated benefit of £200 million to residents in England and Wales alone.

Submitting Institution

University of Bristol

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Ecology
Engineering: Environmental Engineering
Medical and Health Sciences: Public Health and Health Services

Developing modelling tools to support integrated catchment management

Summary of the impact

The intensification of food production, fossil fuel combustion and water consumption has led to substantial increases in the amount of nitrogen and phosphorus flushed from land to water. The accumulation of these nutrients in freshwaters, estuaries and the coastal zone has led to reductions in biodiversity, the loss of ecosystem services, and compromised water security. The UK is a signatory to a raft of international conventions and policies which require reductions in the flux of nutrients from land to the water and restoration of ecosystem health and services. To meet these obligations, policymakers need information on the scale of the problem, the sources of nutrients and the effectiveness of intervention measures.

Research in the Unit has directly addressed this need. It has provided robust scientific evidence of the scale of the problem and the sources of nutrient enrichment, and has provided the capability to test intervention and policy scenarios at field to national scales. It has fed directly into the development of monitoring approaches and mitigation measures now in use by the Environment Agency (EA) and Defra, informed the development of UK Government policy in relation to catchment management, and supported compliance with the EU Water Framework Directive, the renegotiation of the Gothenburg Protocol under the International Convention on Long-Range Transboundary Air Pollution, and reporting on discharges of nutrient pollution to the North East Atlantic under the OSPAR Convention.

Submitting Institution

University of Reading

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Geochemistry, Physical Geography and Environmental Geoscience
Engineering: Environmental Engineering

The CSTT model underpinning the UK defence in European Court of Justice

Summary of the impact

Eutrophication results from excessive nutrient discharge to a water-body, reducing water quality. Eutrophication status must comply with the Urban Waste Water Treatment Directive (UWWTD). As part of a consortium, UHI developed, validated and researched a model (CSTT) capable of screening a water-body for eutrophication. The model was used to defend the UK in the European Court of Justice (2009), against proceedings brought by the European Commission alleging infraction of UK obligations under the UWWTD. The model proved that British waters were not harmfully impacted by eutrophication, sparing the UK government ~£6 billion to implement tertiary sewage treatment across England and Wales.

Submitting Institution

University of the Highlands & Islands

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Biological Sciences: Ecology
Engineering: Environmental Engineering

Defining and sustaining healthy seas

Summary of the impact

Managing and conserving the marine environment requires defining what constitutes healthy ecosystems and understanding the effects of pollution. Edinburgh Napier University (ENU) research defining `undesirable disturbance' allowed the United Kingdom (UK) to mount a successful defence at the European Court of Justice in 2009 against alleged infraction of UK obligations under the Urban Waste Water Treatment Directive. This saved UK taxpayers £6 billion in estimated additional costs. The European Union (EU) Marine Strategy Framework Directive uses a definition of good status for pelagic habitats derived from work at ENU, which benefits policy makers and marine stakeholders by facilitating the establishment of Marine Protected Areas.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Transposition of European policy into practice: Conservation and management of riverine ecosystems

Summary of the impact

Research at Loughborough University (LU) from 2000-2013 by Dr Wood and Professor Wilby has enabled Natural England, the Environment Agency of England and Wales, and the Environmental Protection Agency of Ireland, to implement European Directives (Water Framework, Habitats, and Groundwater). Benefits were accrued from the development of monitoring techniques and integrated modelling to understand long-term drivers of ecological status in river systems. This research has been translated into field standards and planning guidelines within the UK water sector. Moreover, this work helped other organisations such as World Wildlife Fund (WWF-UK) to raise public awareness of the consequences of household water use on freshwater environments.

Submitting Institution

Loughborough University

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

Protecting and restoring aquatic systems

Summary of the impact

The primary mission of the Centre for River Ecosystem Science (CRESS: http://www.cress.stir.ac.uk/index.html) is to build and translate scientific evidence into advice to end-users and policy makers in river management, both nationally and internationally. Site-based advice, design and monitoring have been provided to 55 projects, including award-winning river engineering schemes. Independently, our research in community ecology, fluvial geomorphology and agricultural pollutants has supported an outstanding contribution to the UKs response to the key EU Environmental Directives — Water Framework, Flooding, Species & Habitats and Bathing Waters. We have developed the official tools that are now used to determine the status of freshwaters and structure catchment management plans, and trained others in their use, have pioneered risk assessments and modelling of nutrient, pathogen or carbon losses, publicised their effects, scoped mitigation options though engaging with end-users, and steered the pan-European comparison of bio-assessment methods that now underpins common water policy.

Submitting Institution

University of Stirling

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

2. Delivering UK policy for river conservation and management

Summary of the impact

New approaches to analysing and modelling water systems, developed at Cardiff, have driven national policy changes to improve the proportion of fully functioning water ecosystems in the UK. UK Government, Welsh Government and a range of NGOs have adopted these new approaches, which replace traditional descriptive methods with experimental, analytical and modeling techniques for understanding water ecosystems.

These approaches have been used to develop the water-related component of the National Ecosystem Assessment. This document has directly impacted on UK river management policy, forming the basis of two Defra White papers, `Natural Choice' and `Water for Life', underpinning Welsh Government's Natural Environment Framework and informing the work of a range of NGOs.

Submitting Institution

Cardiff University

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

The Open Air Laboratories (OPAL) project and its contribution to raising public awareness of, and participation in, freshwater science

Summary of the impact

The OPAL Water Centre at UCL, funded to a total of £732k, developed an innovative educational national water survey programme accessible to people of all ages and abilities, promoted especially within disadvantaged communities. Of the more than 45,000 participants, 17% were from 'hard to reach' communities. The Survey encouraged greater understanding of the aquatic environment through public participation in water quality and aquatic biodiversity assessment and used high-quality research to link the community, voluntary and statutory sectors by creating a channel through which locally derived information could lead to site-specific management as well as national and international policy.

Submitting Institution

University College London

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Biological Sciences: Ecology
Engineering: Environmental Engineering

1. Improved Flood Hydrodynamic, Hazard and Water Quality Model Predictions

Summary of the impact

The Hydro-environmental Research Centre (HRC) at Cardiff University has developed a widely used hydro-environmental numerical model, called DIVAST (Depth Integrated Velocities And Solute Transport). DIVAST addresses the need for more accurate models to predict flood risk and water quality levels for a range of extreme events. The model has been implemented in commercial codes, marketed by CH2M HILL (previously Halcrow), and used in design studies, for example, undertaken by Buro Happold. The impacts of the research are marked environmental, health, economic and industrial benefits. It is used by major organisations around the world on large-scale projects and, in particular, for mitigation planning against national and international risks associated with floods and water quality.

Submitting Institution

Cardiff University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Oceanography, Physical Geography and Environmental Geoscience
Engineering: Interdisciplinary Engineering

Case 6 - Improving national surface water quality using an urban non-point pollution model and supporting database

Summary of the impact

Surface water runoff in urban areas makes a significant contribution to pollution of lakes and rivers, but historically is poorly addressed in catchment models. The School of Geography (SoG) developed a Geographic Information System (GIS) model and supporting database to quantify urban source area loadings of 18 common and priority pollutants. This knowledge improves catchment models and supports impact assessment and mitigation planning by environment managers. The research has been exploited on behalf of the Department for Energy, Food and Rural Affairs (DEFRA), the Welsh Assembly, and the UK water industry (UK Water Industry Research — UKWIR, and United Utilities). The research has had three distinct impacts: 1) its use addressing EU Water Framework Directive obligations; 2) its on-going influence on construction industry guidance; and 3) the commercialisation of its stormwater pollutant coefficient database for Sustainable Urban Drainage Systems (SUDS) planning software.

Submitting Institution

University of Leeds

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Physical Geography and Environmental Geoscience
Environmental Sciences: Environmental Science and Management
Engineering: Environmental Engineering

Filter Impact Case Studies

Download Impact Case Studies