Similar case studies

REF impact found 17 Case Studies

Currently displayed text from case study:

Spatiotemporal Undersampling for Highly Accelerated MRI

Summary of the impact

Imaging speed is of critical importance in most Magnetic Resonance (MR) imaging applications. King's College London (KCL) researchers have developed spatiotemporal undersamplings, or "k-t" methods, for three-dimensional (3D) imaging and corresponding image reconstruction methods that have increased the speed of imaging significantly, so that particular scans are now 5-7 fold faster. This has directly impacted the experience of the patient whose overall examination time has been reduced from more than 1 hour to less than 30 minutes depending on the application. The technology has been patented and has been implemented by Philips Healthcare, one of the three major manufacturers of MR equipment. A clinical solution platform for 3D MR cardiac perfusion and quantitative flow imaging, based on the technology developed at KCL, has also been launched by the Swiss company, GyroTools LLC.

Submitting Institution

King's College London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Neurosciences

P1 - The commercial applications and economic success of fluorescence lifetime imaging (FLIM)

Summary of the impact

Imperial researchers in Prof Paul French's photonics group demonstrated one of the first practical FLIM instruments in 1997 using a prototype gated optical intensifier (GOI) developed by Kentech Instruments Ltd and a home-built solid-state ultrafast laser. They subsequently pioneered the use of ultrafast supercontinuum sources (USS) for FLIM. Today wide-field time-gated FLIM is a commercial success and is being widely applied for biomedicine, including for imaging of diseased tissue [e.g. 5] and for FRET (Fluorescence resonance energy transfer) microscopy to assay protein interactions [e.g. 3, 4]. This research thus helped translate FLIM to a wider community, highlighting the potential for tissue imaging, cell biology and drug discovery. It stimulated about £5M of GOI sales for Kentech [section 5, source A], with whom they developed time-gated FLIM technology and applications, and millions of pounds worth of sales of supercontinuum sources for Fianium Ltd [B].

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Biomedical Engineering

Chlorophyll Fluorescence Imaging

Summary of the impact

Pioneering research at Essex developed an innovative mathematical method for determining the chlorophyll fluorescence parameter Fo', as well as novel LED lighting technology and a multi-plant imaging system. This instrument is marketed by Technologica. Originally an Essex spinout, the company has sold 42 units across Europe, Asia and South America since 2006, recording its highest ever profits over the past three years (totalling ~£115k). Essex's mathematical method for determining Fo' is also used by other manufacturers, who have since developed their own imaging systems. This research has helped to establish chlorophyll fluorescence imaging as a mainstream screening tool, now used globally to inform a range of crop production and handling strategies.

Submitting Institution

University of Essex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

3D ultrasound

Summary of the impact

Research at the University of Cambridge Department of Engineering (DoEng) has enabled accurate positioning to be added to 2D freehand ultrasound probes to enable the acquisition of large coherent blocks of high-resolution 3D ultrasound image data. The software code base developed in the DoEng was licensed to two separate companies, Schallware and MedaPhor, to enable them each to develop an ultrasound training product. Both companies have sold to more than 30 customers worldwide during the REF impact period; the Cambridge software had a key role in contributing to the innovation and quality of the products developed by both companies, and significantly increased the speed at which they were able to bring these products to market.

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

Case 2 - Device Applications of 3D Silicon Microstructures

Summary of the impact

The Optical and Semiconductor Devices group led by Richard Syms has been a major innovator in fabrication methods for 3D silicon microstructures, and has developed a wide range of novel devices and techniques based on these innovations. T he impact of their research has been to:

I1) bring the power of mass spectrometry to individual chemists' lab benches and fume hoods, raising their effectiveness and productivity through the launch in 2011 of the world's first commercial desk-top mass spectrometer by Microsaic Systems plc, a start-up company founded by members of the group;

I2) create a second start-up company, Nexeon Ltd, to manufacture nanostructured silicon anode materials, resulting in reduced battery size and weight for electric vehicles and portable electronics;

I3) add to mankind's journey of discovery in space with NASA's Phoenix Mars Mission in 2008, as part of the Atomic Force Microscope team, helping to investigate the presence of liquid water on the surface of Mars.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Craniofacial Depiction for Forensic Identification and Archaeological Investigation

Summary of the impact

Wilkinson has developed, evaluated and applied techniques, standards and datasets for facial depiction and identification of the dead. The impacts include:

  • Improved social welfare by establishing an international forensic tool that has enhanced forensic identification from human remains, and correspondingly improved law enforcement services and disaster victim identification.
  • Delivered highly skilled people and international standards in forensic craniofacial identification.
  • Provided cultural enrichment through enhanced public engagement with science and art internationally, through the craniofacial depiction of historical figures and ancient human remains.

Submitting Institution

University of Dundee

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Studies In Human Society: Anthropology

Market leading sales of fluorescence spectrometers for multidisciplinary applications

Summary of the impact

Fluorescence lifetime research since 1993 in Strathclyde's Photophysics Group led by Prof. David Birch contributed to the success of the University spin-out company IBH (Imhof, Birch, Hallam), and its successful merger with the £1Bn multinational company Horiba. The Strathclyde research has helped Horiba to be, since 2008, the market-leading supplier of fluorescence spectrometers, which comprise steady-state, lifetime and hybrid instruments. The commercial success of the company has led to economic benefits and employment. Through production of an improved spectrometry product range, the Strathclyde research has also facilitated multidisciplinary molecular and materials research globally, across Industry, Government and University sectors, bringing benefits to diverse disciplines such as life sciences, healthcare, chemistry, and nanotechnology.

Submitting Institution

University of Strathclyde

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Biological Sciences: Biochemistry and Cell Biology

Modern global telecom systems powered by technology from the University of Glasgow

Summary of the impact

Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.

Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Distributed Optical Fibre Sensors within the Oil and Gas Industry

Summary of the impact

Research into distributed optical fibre sensing undertaken at the Optoelectronics Research Centre (ORC) at the University of Southampton has had profound economic and environmental impact within the oil and gas industries in both extraction efficiency from existing reservoirs and improved safety performance and operation of three companies: Optasense, Stingray Geophysical and Schlumberger. Each of these companies have established highly competitive positions in the worldwide optical sensor market and collectively employ more than 160 people in the south of England, in their distributed sensing programmes having benefitted from the adoption of this new technology that contributes to the management of environmental risks and hazards.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

CH3: danceroom Spectroscopy: International Cultural Impact and Public Engagement at the frontiers of Science, Technology, and Art

Summary of the impact

danceroom Spectroscopy (dS) is a cutting-edge, interactive public engagement project that allows people to literally step into an interactive molecular dynamics simulation. It has its origins in fundamental research carried out to understand ultrafast chemical dynamics in liquids. On a large scale, dS impact has arisen from its deployment in premier cultural settings in the UK and internationally, eg the London 2012 Olympics, London's Barbican Arts Centre, Ars Electronica (Austria), ZKM (Germany), and the World Science Festival (New York City). Statistics indicate well over 60,000 people have so far experienced dS, with audiences spanning ages from 3 to 73, and attracting those with a variety of interests including science, technology, art and education. Within the cultural and media sectors, dS has received several awards and substantial press attention, all of which has proven beneficial to several non-academic collaborators and partner institutions. The substantial momentum and opportunities available from dS are also being commercially exploited through a spin-out company called Interactive Scientific Ltd.

Submitting Institution

University of Bristol

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Filter Impact Case Studies

Download Impact Case Studies