Log in
Our research has had a global impact on understanding the tectonic development and fill of rift basins, providing a predictable spatial and temporal template for the distribution of hydrocarbon reservoir rocks. The models are embedded in exploration workflows of global oil companies and have influenced recent exploration success (North and East Africa, Atlantic conjugate margins). Translational research on 3-D rift basin outcrop data capture and resulting software licencing has improved reservoir modelling, optimising positioning of $100m wells. Field-based training for several hundred oil industry staff since 2005 has ensured in-depth knowledge transfer.
Impact: Economic benefits have been derived from the MTEM Limited spin-out company, which has been owned since 2007 by Petroleum Geo-Services (PGS). These include a commercial marine application of the MTEM (Multi-Transient ElectroMagnetic) method offshore Tunisia in 2008, successfully discovering hydrocarbons before drilling and the 2012 launch by PGS of a fully-towed commercially-viable marine MTEM system.
Significance and reach: Approximately 180 man-years of employment, with a value of more than $15M, have been provided in Edinburgh over the period January 2008 — December 2012.
Underpinned by: Research into electromagnetic survey methods, undertaken at the University of Edinburgh (1999 onwards), which led directly to the creation of MTEM Limited.
Strategic Environmental Assessment (SEA) research conducted in the Spatial Planning and Impact Assessment Research Group (SPIA) since 2004 has examined how policy makers can support a high level of environmental protection through integration of environmental considerations into the preparation and adoption of policy. Research has made a key difference to the capacity of policy makers to shape more environmentally sustainable policy through evidence based policy making which is informed by environmental assessment procedures and techniques. Research findings have fed into guidance and other documents of national and international organisations in relation to designing environmentally sustainable policy.
UCL's Deep-Water Research Group (DWRG) creates knowledge transfer between research and the hydrocarbon industry. Oil companies use the DWRG's research results to generate improved in-house computer-generated hydrocarbon reservoir models, allowing them to manage, develop and value their reservoirs better. The same companies also use the research to run training courses for employees, including reservoir engineers and managers, leading to improved understanding and more informed decision-making about the management of hydrocarbon reservoirs. Improved management and development of reservoirs ultimately leads to oil companies being able to extract a greater amount of oil.
Failure to predict and control geological overpressures during drilling can lead to operational delays costing millions of pounds, or to blow-outs causing serious environmental damage and costs running into billions. Using methodologies, knowledge and data analysis techniques developed at Durham, a spin-out, GeoPressure Technology (GPT; now Ikon Geopressure) (20 employees, revenues 2008-13: £10.8 million) has become a niche supplier to the global oil industry of expertise, training and software ("PressureView") that predicts and assess the causes of overpressure. GPT consultancy has had particular impacts for companies drilling in the North Sea, offshore Canada, Norway and West Africa where overpressure represents a significant technical challenge.
This case study describes the economic impact to sections of the hydrocarbons industry resulting from research into deep water sediment transport and depositional processes. turbidites.org is a multi-institutional, interdisciplinary research platform based at University of Aberdeen, which takes a multi-scale approach to understanding deep-water depositional systems and their significance as a stratigraphic record of long-term environmental change. The resulting research outputs have been applied to deep-water hydrocarbon reservoir prediction.
Research at the University of Southampton has redefined understanding of the potential rapidity of sea level rise above the present, and of the relationship between climate change and sea level. It has informed the "worst-case scenario" for climate change flood risk assessment in the UK as well as key adaptation policy documents throughout Europe, North America and Australasia. Impact generation occurs mainly though active public engagement, which ensures widespread international media attention, and through direct interaction with the Environment Agency (EA) and UK Climate Impact Programme (UKCIP) which have now joined the research group in a £3.3 million consortium project to better define the "worst case scenario".
Impact: Public and private sector investment in technologies for Carbon Capture and Storage (CCS), including a major UK Government CCS Commercialisation Programme.
Significance and reach: In the 2010 Spending Review the UK government re-affirmed a £1billion commitment to CCS funding, which since 2012 has been referred to as a CCS Commercialisation Programme. [text removed for publication]. The European Commission have placed CCS pipelines into 2012 infrastructure package negotiations, with allocated funds of ~ €2.5billion.
Underpinned by: Research into the sub-surface storage of carbon, undertaken at the University of Edinburgh (1999 onwards).
One of the major problems experienced in the oil production industry is the formation of mineral scale deposited downhole within an oil reservoir and topside. The scale creates a blockage causing a detrimental effect to the productivity of the well. ERPE Research in scale management has led to the following impacts in the REF2014 period:
Enhanced structural geology models of complex fractured reservoirs, utilising new virtual- and field-based techniques developed at Durham, have been applied by industry in the Faroe- Shetland region, N Britain and helped sanction development of the 8 billion barrel Clair Ridge project, a £4.5 billion investment by the Clair Joint Venture Group (BP, Shell, ConocoPhillips, Chevron). Geospatial Research Ltd (a spin-out launched in 2004) has additionally used Durham structural geology research methodologies and expertise to provide > £1.3 million of consultancy services to the global hydrocarbon industry creating, since 2008, 12 new highly skilled jobs.