Log in
Over a period of 20 years, Professor Mangat and colleagues in the Materials and Engineering Research Institute's (MERI's) Centre for Infrastructure Management have developed significant expertise of concrete materials and structures related to deterioration, repair and maintenance of infrastructure. This body of research has led to professional practice and economic impacts related to repair selection, asset management systems, curing systems and novel repair/building materials. Mangat's expertise in concrete deterioration, its remediation and repair has been developed into commercial software systems for bridge and asset management and the national, professionally accredited training course for bridge inspectors/engineers. In the REF impact period, bridge management software has been adopted by over 30 UK local authorities and training delivered to 392 bridge management professionals. Commercialisation of two of Mangat's research innovations, alkali activated materials (AAMs) and low voltage accelerated curing systems (LOVACS), has achieved direct sales of £0.5m and development of the spin-out Liquid Granite Ltd. Additionally, his corrosion protection systems have been adopted by engineering consultants Mott MacDonald, enabling them to win commissioned corrosion-remediation works of over £1m
By ensuring the durability of notable concrete structures in China, such as the Bird's Nest National Stadium Beijing, Dayawan Nuclear Power Station, Harbin-Dalian Railway Bridges, Qingdao Bay Bridge and Beijing-Tianjin Railway Bridges using Autoclam Permeability System and Permit Ion Migration test, developed by Queen's University Belfast (QUB) and sold by a QUB spin-out Amphora Non-destructive Testing Ltd., the savings in future repair costs are estimated to be hundreds of millions of Chinese Yuan (RMB) (the repair expenditure for the three-year period 2009-'11 was RMB 10.2 billion).
Research on permeability and diffusivity testing of concrete on site since 1993 has led to the incorporation of both the Autoclam and the Permit in a corporation standard issued by the Central Research Institute of Building and Construction (CRIBC), China and the test protocol of Permit in a Chinese railway standard.
The training of construction professionals (including more than 200 senior managers from the Chinese construction industry) since 2008 has impacted on improved sales of Autoclam Permeability System and Permit Ion Migration Test, securing around £500k commercial income, and generating new employment in the UK. Since 2008 these test instruments have been sold to 12 countries.
ERPE research, since 2001, into the application of Fibre Reinforced Polymer (FRP) composites for strengthening existing civil engineering structures continues to impact design guidelines for preserving and updating the worldwide ageing infrastructure. The lifetime extension of existing infrastructure and buildings is a priority: the UK Government plans to invest up to £250bn over 10 years to return UK infrastructure to `world class' performance. 75% of developed world infrastructure investment covers retrofitting and repair rather than new-build. FRP strengthening is now the method of choice for seismic retrofit, capacity enhancement, structural repair and rehabilitation of concrete and masonry structures.
ERPE research to enhance strength and structural integrity has been used in the development of, or been incorporated into, at least 12 design guides codes and standards worldwide in at least 5 countries including Australia, Canada, China etc.
£80m has been saved since 2008 by London Underground (LU) and yet more by bridge owners in the UK as a direct result of using the Arching Action (AA) enhancements in strength predicted by our research. The associated disruption would have resulted in enormous congestion, losses economically of £ billions and negative social impact. Multi-million $ savings have also accrued in North America from the use of corrosion free deck bridges, which have minimum maintenance, as has our innovative flexible concrete arch (patented 2004) which has been used for over 40 FlexiArch bridges (£15m in contracts) since 2008.
This Alliance project demonstrated, through the exploration of flexible formwork techniques, that it is possible to use concrete in a much more diverse, sustainable and quality-controlled way than in 20th century architecture, achieving a 25-35% reduction in the carbon footprint of concrete constructions. It has engendered an attitudinal change within the global construction industry, with one US industry professional saying "Prior to this research, concrete was often perceived of as a harsh, aggressive material. Experimentation with fabric forming has shown that it doesn't have to be so". The research has led to two Knowledge Transfer Partnerships, an award-winning Chelsea Flower Show entry and the proprietary application of the technology in other forms of construction. It has also stimulated partnership working with government and schools; collaboration described as the "Curriculum for Excellence at its best".
Research within the Building Research Establishment's sponsored Centre for Innovative Construction Materials (CICM) at the University of Bath has allowed the life of concrete structures to be extended through developing (a) proper methods for assessing existing capacity and (b) the means to increase capacity where necessary. This has prevented buildings and bridges (managed, for example, by large asset owners such as the Highways Agency and Network Rail) from being condemned as unfit for purpose, resulting in vast savings in reconstruction costs and preventing disruption to infrastructure users. The work has led to the researchers being commissioned to write guidance documents that are routinely used by infrastructure owners and consulting engineers worldwide. Over the course of the last eight years this has resulted in several £millions of savings to infrastructure owners and the UK economy.
In Europe, there are over a million kilometres of oil pipelines, nearly a million kilometres of railway tracks, 600 offshore platforms and 300 suspension cable bridges. However, these assets are aging as they have been in use for many years and operate under harsh conditions. Brunel research team has advanced ultrasonic non-destructive testing (NDT) which has the ability to inspect buried pipes in their original place without removing the pipes or damaging their surrounding environment. In addition, the research was pursued to improve the NDT of rail tracks, storage tanks, flexible risers in offshore platforms and aircraft wires. The research has been commercially exploited and incorporated into Teletest Focus System Mark III by Plant Integrity Limited. The significant improvement has led Plant Integrity to terminate the sale of Teletest Mark III and introduce a new version, Teletest Focus System Mark IV, to the market in late 2010. Since then, Plant Integrity has doubled its turnover from sales of Teletest Focus System Mark IV from £1 million to £2 million in less than a year.
University of Nottingham research into a composite design for steel beams and floor slabs has resulted in environmental and economic benefits and an important change in the construction industry. The work has reduced the weight of beams and the overall tonnage of buildings, enabled easier installation and improved structural strength. More than 40 projects, with a total combined floor area in excess of 380,000m2, have used the technology since 2008, and the method's market share has been estimated at up to 60%. The breakthrough has facilitated partnerships between steel frame designers and precast flooring manufacturers, with the value to the latter alone put at more than £5M.
Research led by Professors Cawley and Lowe (employed at Imperial College over the whole 1993-2013 period) resulted in guided wave inspection being established as a new non-destructive evaluation (NDE) method. It is used worldwide to screen long lengths of pipework for corrosion, particularly in the petrochemical industry. A spin-out company has been established that employs seven PhD graduates in NDE from Imperial and the technology is also licensed to another company. Turnover on equipment sales 2008-2013 exceeds £50M and the service companies using the equipment generate about £75M pa in revenue worldwide and employ about 300 FTE staff to carry out the inspection. The oil companies benefit from greatly reduced cost of inspection, especially in areas such as insulated, offshore and buried pipes where access is difficult and expensive for conventional inspection methods. Furthermore, the reliability of inspection is significantly improved, leading to major improvements in safety.
Edinburgh Designs Ltd., (EDL) was spun-out to exploit ERPE research from the original Wave Power Group. With six staff and an annual turnover approaching £2M EDL has supplied the equipment and control systems for wave tanks in 19 countries including the world's largest computer-controlled wave test facility, the US Navy Manoeuvring and Station Keeping Tank. They are currently completing the world's first circular tank, combining waves with currents in any relative direction, which is operated by the 6 person company, "FloWave" EDL, still run by the founding staff, it is the world-leading supplier of wave-making technology for scientific and recreational facilities.