Similar case studies

REF impact found 12 Case Studies

Currently displayed text from case study:

High - Strain Materials Characterisation

Summary of the impact

Research undertaken in the University of Cambridge Department of Physics has provided benchmark data on, and fundamental physical insights into, the high strain-rate response of materials, including powdered reactive metal compositions. The data have been used widely by QinetiQ plc. to support numerical modelling and product development in important industrial and defence applications. One outcome has been the development of a reactive metal perforator for the oil industry which significantly outperforms conventional devices. These devices `perforate' the region around a bore-hole, thereby substantially enhancing recovery, particularly in more difficult oil fields, and extending their economic viability. Over a million perforators have been deployed since their introduction in 2007.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Passively safe street furniture

Summary of the impact

Dr Richard Brooks and his team at the University of Nottingham have been investigating the high strain rate behaviour of composite materials since 2003. This has led to the development of two products that are being installed in streets in the UK and Ireland by East Midlands SME Frangible Safety Posts Ltd. The direct benefits to the company have been: the installation of 900 products in the UK and Ireland; saving of £17k capital cost and 2 months in terms of time to market per product developed and; raising of £1.8M investment to bring the products to market At least one life has already been saved in the Shetland Islands as a direct consequence of the product behaving in the way it was designed to.

Submitting Institution

University of Nottingham

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Enabling the commercial development of market-leading microcapsule-based products by Procter & Gamble using a novel mechanical analysis technology

Summary of the impact

The impact presented in this case study is the commercialisation of 15 products with perfume microcapsules by Procter and Gamble (P&G), made possible using capsule mechanical strength data provided by Prof Zhibing Zhang's research group at Birmingham. Use of microcapsules gives improved freshness performance, and thus commercial advantage, compared with traditional formulations; they have been incorporated in P&G's four major billion-dollar brands — Downy, Febreze, Lenor and Tide. This has significantly improved their competitiveness enabling P&G to retain their leading position in the USA and Western Europe. A novel micromanipulation technique developed at the University of Birmingham has been used extensively to obtain mechanical properties data for the micro-particles, including microcapsules prepared in Birmingham and provided by companies, which is related to their formulation and processing conditions and end- use performance. In addition, the knowledge generated has helped 15 other companies to commercialise new functional products containing micro-particles.

Submitting Institution

University of Birmingham

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Innovative acoustic material enables economic growth while reducing waste and noise pollution

Summary of the impact

University of Bradford research has enabled a material manufacturing company, Armacell, to reuse up to 95% of its production waste to produce new, high-value acoustic products with up to 50% better acoustic performance than any competition products of similar size. We protected the developed IP through several international patents and set up a spin-off company, Acoutechs Ltd, to explore this technology commercially. These materials are now used to reduce noise levels below the recommended limits and to improve the general acoustic quality of spaces at home and work for the benefit of public health. The products generate an annual turnover of more than €4 million for Armacell and prevent more than 500 tonnes of plastic waste from going into landfill annually.

Submitting Institution

University of Bradford

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering, Interdisciplinary Engineering

Structural mechanics - enabling weight reduction and performance enhancement of composite aerospace structures (for redaction)

Summary of the impact

For aerospace vehicles, the development of new materials and structural configurations are key tools in the relentless drive to reduce weight and increase performance (in terms of, for example, speed and flight characteristics). The economic drivers are clear — it is widely recognised that it is worth approximately $10k to save one pound of weight in a spacecraft per launch and $500 per pound for an aircraft over its lifetime. The environmental drivers (ACARE 2050) are also clear — reduced aircraft weight leads to lower fuel burn and, in turn, to lower CO2 and NOx emissions. With such high cost-to-weight ratios, there is intense industrial interest in the development of new structural configurations/concepts and enhanced structural models that allow better use of existing or new materials. Analytical structural mechanics models of novel anisotropic structures, developed at the University's Advanced Composites Centre for Innovation and Science (ACCIS), are now used in the industrial design of aircraft and spacecraft. Based on this research, a new, unique anisotropic composite blade, designed to meet an Urgent Operational Requirement for the MoD, is now flying on AgustaWestland EH101 helicopters that are deployed in Theatre. In addition, the new modelling tools and techniques have been adopted by Airbus, AgustaWestland, Cassidian and NASA and incorporated into LUSAS's finite element analysis software. These tools have, for example, been used to inform Airbus's decision to use a largely aluminium wing design rather than a hybrid CFRP/aluminium wing for the A380.

Submitting Institution

University of Bristol

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Improving the Safety and Performance of Commercial Tyres and other Rubber Products

Summary of the impact

Research into a number of different aspects of rubber has fed into a series of extremely successful collaborations between Queen Mary and a large number of industrial partners. This has led to significant economic impacts, ranging from enhancing the performance of teams in the multi-billion dollar sport of Formula 1 Racing, to helping develop new UK designed and manufactured radial tyres for large civil aircraft. Rubber research has been undertaken continuously at QMUL for over five decades. Prof. James Busfield has led the activity since 1994, working with more than 30 major industrial collaborators, including Bridgestone, Dunlop, Red Bull Racing F1 and TARRC, who have applied our research and employed our researchers to achieve commercial and competitive advantage.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Realising innovative and adaptive product design and optimisation through an integrated materials and modelling system

Summary of the impact

The investigators of this impact case study have utilised their expertise in materials engineering, theoretical/numerical modelling and product development to achieve significant economic, social and environmental impacts in a range of fields through developing a systematic methodology for innovative product design and optimisation. Through several industrial projects and collaborations, significant impacts have been witnessed including new products creating several million pounds in revenue annually for businesses in different sectors and green manufacturing technologies in repair and reclamation of components. All the described impacts were results of investigation in the Mechanical Engineering and Materials Research Centre (MEMARC) over the assessment period.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

ROBUST DESIGN OF MICRO-SCALE PIEZOELECTRIC ACTUATORS

Summary of the impact

The research produced accurate simulation models of piezoelectric actuators for investigating sensitivities to parameter variations that led to maximum power for minimum electric field. This was the basis of design rules for determining new products at the industrial partner NXT, now named Hi-Wave Technology, headquartered in Cambourne, UK. Old design rules had led to two failed products whereas these new design rules have guided successful products with a major Japanese television manufacturer, a Japanese printer company and a Russian mobile phone company. Without this research Hi-Wave would have stopped activities in this technology. To date, licences for more than 24 million units per annum have been sold and more than 280,000 units manufactured.

Submitting Institution

Brunel University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics
Engineering: Materials Engineering

1. Standards for the Application of Materials in Industry

Summary of the impact

Impact on industry, academia and government institutions from engineering materials research in the Mechanical Engineering department has been delivered through it directly leading to UK, USA and International Standards and Codes relating to three themes:

  • Predicting and assessing the service life of high-temperature components.
  • Determining the fracture resistance of plastics, composites and adhesives.
  • Predicting the catastrophic failure of plastic pipelines.

The results of the research of staff in this unit have led directly to UK, US and International Standards and Codes: ASTM Standards E1457-07 (2012) and E2760-10 (2012); R5 EDF Energy Code of Practice (2012); BS 7910 (2013); ISO 25217 (2009); ISO CD 15114 (2011) and ISO 13477 (2008). These documents all cite peer-reviewed publications by staff from this unit. These Standards and Codes are now the basis of fracture-mechanics methodologies used by leading engineering companies like Airbus, EDF, E.ON, GKN, Rolls-Royce and Vestas, whose commercial success depends upon technological leadership. In this way our research has led to savings by UK industry of many millions of pounds, as detailed in Section 4.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Materials Engineering

2. Engineering Solutions for High Level Nuclear Waste Disposal

Summary of the impact

Research conducted at the Geoenvironmental Research Centre (GRC), supported by the European Commission via its EURATOM programme, has been instrumental in addressing the long standing global problem of high level nuclear waste disposal. The pioneering development of a sophisticated coupled thermal/hydraulic/chemical/mechanical model of clay behaviour has provided new understanding of the performance of engineered barriers proposed for use in nuclear waste repositories. This has, in an unprecedented development, directly enabled the design of numerous nuclear waste repositories to proceed. The repositories in Sweden and Finland are currently at "Licence application" and "Construction" phases, respectively. Therefore the impacts claimed during the REF period are: significant impact on engineering design, leading to improved environmental conditions; considerable economic investment and marked impact on public policy and services.

Submitting Institution

Cardiff University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies