Similar case studies

REF impact found 60 Case Studies

Currently displayed text from case study:

Modern global telecom systems powered by technology from the University of Glasgow

Summary of the impact

Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.

Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Laser Micromachining Limited (LML)

Summary of the impact

The innovative application of laser micromachining research has been effected through Bangor's spin-out company Laser Micromachining Ltd , LML (established in 2005). The versatile approach adopted by LML has enabled it, since 2008, to undertake of order 1000 commercial contracts for more than 280 industrial customers and 60 academic institutions. That work has contributed directly to product development and related economic growth in sectors including medical devices, biotechnology, energy, photonics, optoelectronics, aerospace, automotive and microelectronics. With an annual turn-over of circa £0.5M LML has created and sustained 5 full-time jobs. LML also contributes to training in laser micro-machining techniques on a European basis.

Submitting Institution

Bangor University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Manufacturing Engineering, Materials Engineering

Development of ultra-stable lasers for metrology, spectroscopy and imaging

Summary of the impact

Pound-Drever-Hall (PDH) locking, developed into a practical technique by researchers at the University of Glasgow, is the ubiquitous method for the precise frequency control of stable laser systems. This control is central to laser products from companies such as Toptica and Newport, and has an estimated global annual market in excess of £5M. The PDH stabilisation technique is essential for the operation of the time standards maintained in all of the world's Governmental Metrological Standards Laboratories (e.g. NPL, NIST, BIPM) and finds applications in inspection tools in the semiconductor industry and deep UV lasers for UV-Raman spectroscopy.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Ultrashort-pulsed lasers as the underpinning technology for ultrafast technology

Summary of the impact

Impact: Economic gains / altered business practices.

Research on ultrafast lasers has led to the development of new products and services and has been pivotal in the development of a whole field of new technology.

Significance: The research underpins the product development of a range of world leading companies including Femtolasers, Newport Spectra-Physics and Menlo Systems.

Reach: The companies that use the technology represent all of the leading players in the solid-state femtosecond laser field, a marketplace worth more than $250M annually.

Beneficiaries: The impact presents economic gains to the companies involved and underlies many applications in e.g. biology and medicine, providing significant benefits to the public at large.

Attribution: The research was performed by Professor Sibbett's group.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Technology: Communications Technologies

Development of compact and efficient laser systems

Summary of the impact

This is an example of early economic impact where research on various aspects of laser engineering has resulted in the development of inexpensive, compact, efficient and user-friendly laser sources. An example is the incorporation of quantum dot structures into semiconductor laser architectures, with these replacing much larger and more expensive systems, with a range of applications in areas such as microscopy, biomedical diagnosis and therapy. This work has led to the generation of key know-how and patents that have been subsequently licensed as well as resulting in a variety of laser-related products being brought to market. Additionally, it has resulted in extra staff being employed at one of our partner companies.

Submitting Institution

University of Dundee

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)

Economic benefit from improved processes and sales of new products in diamond photonics market

Summary of the impact

Commercialisation of high optical quality diamond by Element Six Ltd (2010 on) and of diamond- enabled lasers by M Squared Lasers Ltd (2012 on) has been made possible by underpinning research on laser engineering and optical characterisation at the University of Strathclyde. [text removed for publication] Markets for this material include thermal management of lasers to enable higher powers and high-performance laser output windows. [text removed for publication]

Submitting Institution

University of Strathclyde

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

Advancing Clean Energy Research and Biosecurity through Novel Bragg Grating Technologies

Summary of the impact

Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Communications Technologies

High Power Fibre Lasers

Summary of the impact

High power fibre laser research undertaken at the University of Southampton has led to the creation of a new business sector in the generation of highly efficient and highly practical fibre laser technology. This has revolutionised areas of industrial material processing and enabled the development of specialist components for high-end industries (such as aviation and defence) as well as an array of new medical devices, procedures and manufacturing technologies. The research is also directly responsible for the commercial success and sustained growth of a spin-out company, SPI Lasers Ltd, which has an annual turnover of over £40 million and employs more than 250 people in the Southampton area.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Technology: Communications Technologies

P7 - Micro-Slab Laser Technology – Midaz Lasers Ltd

Summary of the impact

Midaz Lasers Ltd is a spin-out laser company formed by academic founders, Professor Michael Damzen (Director and Chief Technology Officer, CTO) and Dr Ara Minassian (Chief Scientific Officer, CSO), in 2006 as the vehicle for commercial exploitation of patented laser technology [4] arising from Prof Damzen's research group in the Physics Department at Imperial College London.

Midaz has designed and assembled multiple engineered laser and amplifier products, incorporating this patented technology, and has sold units to industrial customers in Europe, N. America and Asia since 2010. The primary market and beneficiary for Midaz laser technology is the industrial laser manufacturing sector and the benefit of the technology is to create laser industrial tools for higher throughput and lower cost manufacturing, including in the semiconductor industry for production of consumer electronics. In July 2012, Midaz was successfully sold to world-leading laser company, Coherent Lasers Ltd, for $3.8 Million.

Midaz A70-W unit. World's highest gain solid-state Laser Amplifier.
Midaz A70-W unit. World's highest gain solid-state Laser Amplifier.

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies