Log in
Organic solvent nanofiltration (OSN) is a membrane separation technology used for separating molecules present in organic solvents. Research in the Livingston group has resulted in the creation of membranes with exceptional stability in organic solvents, coupled to high flux and excellent rejection performance. These membranes have been developed through to commercial products, and are manufactured by Evonik MET Ltd in the UK in a purpose-built facility in West London.
For many separations OSN uses ten times less energy than thermal methods, and can process molecules at low temperature. Through Evonik MET, OSN membranes and test equipment derived from the Imperial research have been supplied to over 100 customers including many of the major global chemical and pharmaceutical companies. For his work on OSN, Andrew Livingston received the 2009 Silver Medal of the Royal Academy of Engineering awarded "...to recognize an outstanding and demonstrated personal contribution to British engineering, which has resulted in successful market exploitation..." [7]
Research at the Department of Engineering Science has led to step changes in the way industrial membrane filtration plants are designed and operated . Based on some key research results that have successfully tackled membrane fouling problems, the work has triggered rapid uptake of membrane-based technologies that are more energy-efficient than traditional processes. Water companies are among those achieving both economic and the environmental benefits, and the research has played a key role in the membrane bioreactor (MBR) market, which is now growing at over 10% a year, and in the global desalination market which exceeds US$19 billion, according to GMR Data (2012) [13].
Fifteen years of ceramic membrane research at Robert Gordon University and the applied development programme by the RGU spinout Gas2 Ltd have culminated in the development of the Gas2 pMR™ CPOX process and its new GTL reactor. This technology has captured the attention of major global energy investment company Lime Rock Partners for possible onshore and offshore deployment addressing the monetisation of stranded gas and to avoid flaring and venting of unwanted associated gas. The economic impact is £17.2 million in equity investment during 2008- 2013 with concomitant impacts of new processes and employment opportunities at Gas2, with environmental impact for the oil & gas industry from eco-friendly handling of stranded natural gas.
A small, battery-powered device for oxygen generation and distribution (Natrox™), has been developed that, with air as input, can supply humidified oxygen evenly to wounds, such as ulcers, surgical wounds and burns, allowing the patient to be treated in a discrete efficient way without interfering with their lifestyle. With conventional approaches, oxygen can be supplied to hospital patients with ulcers only via gas bottles or piped oxygen, with the limb or body being enclosed in a plastic bag. Many successful trials of the Natrox™ device have been performed, initiating considerable interest, leading to the manufacturing and distribution of the device by InotecAMD Ltd, a University of Cambridge spin-out.