Similar case studies

REF impact found 12 Case Studies

Currently displayed text from case study:

Improved Creep-Fatigue-Oxidation Resistance in Gas Turbine Disc Materials

Summary of the impact

Research at Portsmouth has significantly improved the understanding of damage tolerance under creep-fatigue-oxidation conditions experienced in aero-engine components. The understanding has been developed through research on a new-generation disc materials including U720Li and RR1000, which have since been used in Rolls-Royce engines including Trent 900 in Airbus A380, Trent 1000 in Boeing 787 and the latest Trent for Airbus A350 XWB. These new materials have enabled aircraft to operate more efficiently at higher temperatures, with a major impact on CO2 emission and a significant impact on economy due to the new market opportunities and the reduction of operating costs.

Submitting Institution

University of Portsmouth

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Improved performance of a jet engine through improved materials manufacturing processes

Summary of the impact

Rolls-Royce has been able to reduce manufacturing scrap rates significantly, better control the single crystal growth process for nickel superalloy blades and more confidently understand production issues in Ti blades. The lower bound saving for the Imperial contribution to the work is estimated at £100M p.a. This has contributed to the production of a jet engine with better fuel efficiency, increased cost effectiveness due to lower scrap rate and improved time on wing for fleets in service.

Jet engine modifications account for over half the fuel efficiency improvements in modern aircraft, with the industry accounting for a large share of UK visible exports. Improvements in gas turbine technology offer jet fuel (cost and CO2) savings and support UK employment. Titanium alloys in the cooler sections and nickel alloys in the hot sections are the subject of this case study.

The engines consist of Ti or Ni alloy discs attached to a series of shafts which are turned by aerofoils (blades) in the gas stream. Incoming air is accelerated by the fan section then compressed, mixed with fuel and burned, with the energy then being extracted by the turbine. Turbine blades operate in a gas stream at 1800+ K, 200 K greater than the alloy melting point, and extract up to 700 kW per blade to power the fan and compressor. Each disc holds around 60 blades, with around 9 turbine stages in a large engine. In titanium, failure of a fan blade or multiple blades is extremely costly (£5M per event) and of course poses safety issues. Research in the Department has focussed on a) predicting the microstructure of nickel superalloys and b) understanding defect formation in titanium and superalloys.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

The development of new coatings for Tata Steel Europe through collaborative research

Summary of the impact

Collaborative research with Tata Steel has delivered significant economic impact, maintaining leading-edge business performance with new functionally coated metal construction products carrying 40 year warranties, and research contributing to global competitiveness for Electrical Steels. In addition partner company performance through skilled people has been improved through the delivery of 61 highly trained doctoral level coatings leaders and technologists, the majority of whom are now running their own research groups or are director level technologists.

Public interest and engagement activity has focussed on the application of research techniques and in functional coatings for energy through the `Buildings as Powerstations' concept and `Materials Live' events.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Advanced simulation technology to optimise the recovery of high value metals through heap leaching

Summary of the impact

This case study describes the creation and use of advanced simulation technology by international mining corporations to optimise high value metal recovery. The technology involved the development of advanced novel computational methods and software tools to model industrial scale heap leach processes for large scale industrial application at major mining operations. This focus on the development of optimised operational strategies has produced considerable economic benefits measured in the $multi-millions to industrial sponsors, including $58 million dollars in additional revenue for one multi-national corporation over one year following the adoption of engineered heaps based upon the advanced simulation tools from Swansea.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Engineering: Resources Engineering and Extractive Metallurgy

4. Rolls-Royce University Technology Centre on Vibration

Summary of the impact

Cost savings in the order of £130M over the REF period have been achieved by Rolls-Royce through the improvement of engine reliability of civil and military aero-engines, industrial machines used for electricity generation and gas/oil pumping applications through the use of techniques and processes developed by the Vibration University Technology Centre (UTC) at Imperial College London.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Mechanical Engineering, Interdisciplinary Engineering

Copperopolis: Regenerating and Transforming an Industrial Landscape in the Lower Swansea Valley

Summary of the impact

Research on the copper industry by Swansea historians has acted as a catalyst for the regeneration of the former Hafod-Morfa copperworks site in the Lower Swansea Valley. Until recently the abandoned site was associated only with industrial dereliction, but historical research on entrepreneurship, innovation and global trade has galvanised a new public appreciation of its international significance. Since 2010, an extensive programme of public engagement activities has persuaded key partners in local government to adopt an ambitious plan to preserve and present its cultural heritage. The project received national acclaim in Research Council UK's 2011 report on `Big Ideas for the Future', which noted that `The example set by the research in Swansea could be used across the UK' (C1).

Submitting Institution

Swansea University

Unit of Assessment

History

Summary Impact Type

Societal

Research Subject Area(s)

Earth Sciences: Geochemistry
Engineering: Environmental Engineering, Resources Engineering and Extractive Metallurgy

Advanced Materials Modelling for Earth and Space Application

Summary of the impact

Research in materials modelling by the Computational Science and Engineering Group (CSEG) is helping aerospace, defence and transport companies design advanced materials and new manufacturing processes. From lightweight components like aeroengine turbine blades to the control of magnetic fields to stabilise the next generation of International Space Station levitation experiments, CSEG is supporting innovations which have:

  • economic impact due to increase in competitiveness, market share, energy cost reduction and better use of raw materials;
  • environmental impact due to new lightweight recyclable materials and reduced energy processes;
  • increased public awareness of the importance of advanced materials and influenced government policy.

In the assessment period, CSEG collaborated closely with leading industries in steel-making (ArcelorMittal, Corus), primary aluminium (Dubal, Rusal, Norsk-Hydro, SAMI) and lightweight structural materials for transport and aerospace (European Space Agency, Rolls-Royce).

Submitting Institution

University of Greenwich

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

High Performance Magnesium Alloys

Summary of the impact

Research at Manchester has led to the development of a new class of high performance magnesium alloys based on the addition of rare-earth alloying elements. The new alloys combine low density and the highest strength of any magnesium alloy. Used to substitute for aluminium in aerospace and automotive they produce weight savings of 35% improving performance and reducing fuel consumption. Commercialisation of these alloys by Magnesium Elektron (ME), the international leader in magnesium alloy development, contributes over $20m per annum to company revenue. This includes development of the first commercial product available for bioresorbable magnesium implants, SynermagTM, launched in 2012.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Analysis of residual stress in aero engine fan blades

Summary of the impact

Wide Chord Fan Blades provide a key competitive advantage for Rolls-Royce's £8.6bn aero-engine business employing 1500 staff. In service, blades experience massive loads and high-frequency vibration, creating the potential for failure. In response to blade-off events on the Trent™ 800 engine, Rolls-Royce (RR) urgently needed a means of inhibiting fatigue crack growth, and selected laser shock peening (LSP). Research in the UoA, elucidating the mechanism and outcomes of LSP, provided critical scientific underpinning for its introduction into the production process for the Trent™ 800 and, subsequently, other engines. Further the UoA now provides manufacturing process QA. Orders for the new Trent™ XWB engine, relying on LSP, exceed £60bn, with partners The Metal Improvement Company establishing dedicated LSP treatment facilities for RR in the UK (with 30 employees) and Singapore.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

High - Strain Materials Characterisation

Summary of the impact

Research undertaken in the University of Cambridge Department of Physics has provided benchmark data on, and fundamental physical insights into, the high strain-rate response of materials, including powdered reactive metal compositions. The data have been used widely by QinetiQ plc. to support numerical modelling and product development in important industrial and defence applications. One outcome has been the development of a reactive metal perforator for the oil industry which significantly outperforms conventional devices. These devices `perforate' the region around a bore-hole, thereby substantially enhancing recovery, particularly in more difficult oil fields, and extending their economic viability. Over a million perforators have been deployed since their introduction in 2007.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies