Log in
Theoretical and computational methods for optimising the design of gradient and shim coils with arbitrary shapes and topologies were developed in collaboration with Magnex Scientific as part of a CASE award (2004-07). The resulting software was licenced to Agilent (who now own Magnex Scientific), for whom it has opened up new market opportunities in the supply of novel magnetic resonance imaging systems, leading to £3.4M sales since 2009. The software has also been used by Paramed Medical Systems to improve their `open' magnetic resonance imaging systems, which are optimised for orthopaedic imaging, allow vertical subject posture, and facilitate image-guided treatment, as well as offering a better patient experience. Our work has thus resulted in impact in the economy and healthcare.
Our research on the physiological effects of the electromagnetic fields generated in magnetic resonance imaging (MRI) has been used by: (i) the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the UK Health Protection Agency (HPA) in establishing advisory limits and action values in their published regulatory guidelines; (ii) the EU Commission as part of the evidential basis in their decision to derogate MRI from the scope of the Physical Agents Directive 2004/40/EC. These decisions have enabled the continued operation of MR scanners across Europe, safeguarding the access to MRI for 500 million people. The economic benefits arising from the manufacture of MRI equipment were also secured. Our work has thus resulted in impact on public policy, the economy and healthcare.
A device developed for spintronics research at the University of Oxford has been adapted as the basis for robust, high-performance position or composition sensors to detect many different materials including metals, plastics, ceramics and fluids. These sensors are capable of making contactless measurements in very hostile environments. A spin-out company was formed in 2004 to exploit and apply this technology to a wide range of technical and engineering problems and has achieved over £2.5m revenue. These sensors form the key elements of products that have been successfully deployed in automotive and other transport applications. Benefits to end users include ease of use, speed and the cost savings.
Research at the University of Cambridge, Department of Physics on sensitive techniques for measurements of magnetic and electrical properties of materials led to the selection of Dr Michael Sutherland as an expert witness in a series of major police investigations involving fraudulent bomb detecting equipment. Scientific evidence Dr Sutherland presented in court was key in securing guilty verdicts, leading to the breakup in 2013 of several international fraud rings with combined revenue in excess of £70 million. This criminal activity had caused significant damage to the reputation of the UK in Iraq and elsewhere.
Nottingham researchers constructed the world's first 3T MRI scanner, thus demonstrating the viability and benefits of high-field MRI. This provided a stimulus for magnet and MRI system manufacturers to develop 3T scanners, which have now become established as the standard platform for high-end clinical MRI studies. We estimate that since 2008: 2500 3T scanners have been installed, representing a global investment of $5 billion;and 30-40 million patient examinations have been performed with 3T MRI scanners. Technical advances which underpinned the Nottingham 3T scanner also impacted on the development of functional MRI, thus opening up a new field of medical research and clinical application. In a subsequent phase of research, the Nottingham group developed ultra-high (7T) magnetic MRI in partnership with PhiIips; forty 7T MRI scanners (current unit cost >$10M) have now been installed across the world.
A team of biomedical engineers at UCL has developed a non-invasive growing implant that improves the health and quality of life of young patients who have suffered from certain bone cancers. The prosthesis avoids the costly and invasive surgical interventions of previous treatment. Instead, the prosthesis can be lengthened in a quick and pain-free procedure conducted at an outpatient clinic. As a result, it reduces the costs of bone reconstruction and growing by around £19,000 per patient, as well as reducing the risk of infection and subsequent treatment. Since 2008, more than 400 devices have been sold; in addition to the cost savings indicated above these devices have generated more than £6 million income for UCL spin-out company Stanmore Implants Ltd, which was sold for £10 million in 2008.
Research in the Department of Electronic & Electrical Engineering at the University of Sheffield has generated economic impact through the creation of a spinout company, Magnomatics Ltd, commercialising high performance electric drives, in particular those employing magnetic gearing technologies. Magnomatics employs 35 full-time staff, had a turnover of £1.4M for the year 2012, and its technologies are now being developed for applications in utility scale wind turbines, hybrid vehicles and marine propulsion.
Globally, around 400 people in every million head of population will present with a fracture of the tibia that requires surgical intervention. This case study describes the exploitation of research that commenced with a DTI/EPSRC grant. The results have a direct impact on the 400/million population, their family, employers, and associated healthcare providers.
During the period 2008-today:
over 200 surgeons in 10 countries have been retrained in the new methodology; between 2000-3000 patients have benefited from improved outcomes; 47 hospitals benefited from reduced operating times and reduced costs; and surgeons benefit from a marked reduction in per-operative x-ray exposure (reducing the risk of cancer).
The initial project was to identify the optimum movement of the fracture fragments to promote healing; this was to lead to devices with the potential for significant impact. A spin out company was formed which has attracted over £1.4 million investment.
New methods to study the biophysical action of the human digestive system were developed in Nottingham using high speed magnetic resonance imaging (MRI) and have been used by: (i) the food and drug industry (Unilever, Proctor & Gamble, Mitsubishi Chemicals, Reckitt Benckiser, Glaxo and McNeil Pharmaceuticals) to develop new products; (ii) Plant Bioscience Limited (PBL) to develop an artificial Dynamic Gut Model (DGM) which is now being applied commercially to characterise drug and food ingestion; (iii) the BBC and other media agencies in programmes related to the promotion of better understanding of nutrition in an effort to combat obesity.
We have developed a new technique of performing cardiac catheterisation in children and adults with congenital heart disease. This has led to the commercialisation of hybrid MRI and X-ray cardiac catheterisation laboratories, a new scientific technique for studying cardiac physiology and pathology and most importantly is being routinely used in clinical practice as it dramatically reduces X-ray radiation exposure (by a factor of 8) and improves the accuracy of physiological measurements leading to better clinical decision making and impact.