Log in
Mathematically-based image processing techniques developed at the University of Cambridge have helped bring about a revolution in the ability to extract quantitative measurements from laboratory experiments in fluids. Techniques and software tools developed from this research and incorporated into commercial software are now used in engineering, physics and mathematics research laboratories around the world on projects ranging from fundamental research to ones with strong industrial connections.
Professor Hani Hagras' research into type-2 Fuzzy Logic Controllers (FLCs) underpins novel control systems which avoid the drawbacks and shortcomings of the type-1 FLCs used in numerous real world applications. Type-2 FLCs, developed at Essex, enable challenging applications to be realised and managed with better accuracy and robustness. Such applications include:
The Fault Dynamics Research Group (FDRG) have designed and executed analogue experiments to replicate the 3D/4D geometry of oil and gas exploration targets. The main beneficiaries are the international petroleum industry. The research is "pivotal to British Petroleum's subsurface developments" (R. Humphries BP 2012) in determining the number of multi-million pound wells required to access reserves. FDRG models "changed the way seismic data (was) interpreted" (Chief Scientist, Geoscience Australia 2012) in particular in the NW Australian frontier with "BP Exploration (Alpha)....work program(s) of $600 million" (Chief Scientist, Geoscience Australia 2012).
Two books and review/research articles in Italian have disseminated the findings from the underpinning research on creating false autobiographical memories and the dangers of inadequate interviewing techniques. This work has critically increased awareness in the Italian legal system amongst both barristers and judges, to the point of shaping the practice of interviewing witnesses in that country. It has also informed all verdicts on child sexual abuse by the Supreme Court of Cassation.
Over 25 years, research by Hendry and Stevenson has explored the specific challenges faced by Make-to-Order (MTO) manufacturing companies and developed a novel Workload Control (WLC) approach, which has been most notably implemented in PDS Engineering. This led to significant increases in successful bids and reductions in lead times for PDS, with a knock on effect through their supply chain that includes large aerospace companies like Rolls-Royce. Publication of this stream of research led to international collaborations including in the Netherlands and Belgium, where an EU project involving 10 firms and further consultancy work has also led to reductions in lead times, typically of over 50%. The WLC approach is now ready for commercialisation in the UK.
Biocatalysts provide unique activities that facilitate chemical transformations that are simply not possible using abiotic methods. Northumbria University researchers with expertise in enzymes and biocatalysis have provided biocatalysis services to the pharmaceutical, fine chemical, food and biofuels industries through our business facing innovation unit Nzomics. This has generated significant contract research, collaboration and licence agreements to companies, including the pharmaceutical company GlaxoSmithKline and the services-led company Almac. Biocatalysts produced as a result of Northumbria University research and technology transfer are sold worldwide and benefit business through their use in research and development activities, such as the production of intermediates in drug synthesis.
Work by University of Stirling staff has contributed directly to improved wildlife resource management in the Central African region. Innovative research into the status and trends of key wildlife populations, ecological impacts, resource harvests and trade, drivers of resource use and assessing management success have contributed directly to new thinking on the issue, revisions of laws and policy and to success in attracting foreign aid for management issues. Stirling staff members now advise the Government of Gabon on resource management policies, National Park management and biodiversity issues.
This case study concerns the impact of Plymouth University research relating to farmed fish diets, which led to changes to EU legislation with respect to two types of ingredients: animal proteins and probiotics. The impact of the reintroduction of certain animal proteins in farmed fish feeds (previously banned to protect human health) and to the authorization of a probiotic as a feed additive, involved industry investment in research, have reduced the environmental impact of farmed fishing, improved competitiveness, enhanced yield and quality and improved fish health and survival.
Research on the environmental safety and toxicity of nanomaterials in fishes has had a global impact across both government and industry contributing to:
(i) Consensus building on biological effects allowing regulatory agencies/governments to make proper decisions on the hazard of nanomaterials to farmed fish and wildlife.
(ii) Critical evaluation of the internationally agreed process of toxicity testing to determine whether the current legislative test methods are fit for purpose and acceptable to the aquaculture industry.
(iii) Identification of national/international research priorities and policies via work with the OECD and the US Government.
(iv) Influencing government policy to support training and information for industry.
Research and knowledge exchange led by Prof. Jefferies in sustainable urban drainage systems (SUDS) has driven the design and integration of SUDS into urban environments, into urban planning and everyday practice in the UK, Europe and worldwide. This research has contributed to the development of policies and established guidelines that have informed the set-up of operational and monitoring systems and the reduction of a training manual which is impacting widely on the sector (downloaded >40.000 times). Evidence gathered through this research has supported drainage policy nationally and now underpins important parts of urban infrastructure, improving environments and their resilience to flooding.