Log in
The Fault Dynamics Research Group (FDRG) have designed and executed analogue experiments to replicate the 3D/4D geometry of oil and gas exploration targets. The main beneficiaries are the international petroleum industry. The research is "pivotal to British Petroleum's subsurface developments" (R. Humphries BP 2012) in determining the number of multi-million pound wells required to access reserves. FDRG models "changed the way seismic data (was) interpreted" (Chief Scientist, Geoscience Australia 2012) in particular in the NW Australian frontier with "BP Exploration (Alpha)....work program(s) of $600 million" (Chief Scientist, Geoscience Australia 2012).
Industrial regions around the UK are seeking to develop bio-based economies in order to minimise their CO2 emissions and stimulate economic regeneration.
Researchers at Surrey, in collaboration with key industrialists from the Humber region, have produced a mathematical model of the main factors influencing the transition to, and establishment of, a bio-based economy. This model has been used by the Humber Environmental Managers (HEM) group, and the Humber local authorities to help guide strategic planning for the region. The outcome is that the research has contributed to environmental improvement and economic regeneration of the Humber region, and has indirectly impacted on public policy.
This impact case study describes the development and application of models of training and performance in elite cycling. These models have been used by elite medal winning teams in their search for competitive advantage in the UK (by British Cycling and British Triathlon, including the GB Olympic Cycling and British Triathlon Teams and the British Paralympic Team) and internationally (by the Australian Institute of Sport). These new cycling models have provided the basis for the development of new training processes that are influencing the way in which many nations prepare their elite riders. This work has contributed directly to enhance elite sports science practice in the field of cycling and the competitive advantage for British teams to which it contributes is envied around the world. The adoption of the underlying algorithms for the `Wattbike' software has given our work a wider impact on sports practice and training methods, and it has been adapted for the `Map My Tracks' website which is used by sports enthusiasts worldwide.
Research at the University of Strathclyde has increased the economic and policy modelling capacity of the Scottish Government. This has been affected through collaboration between researchers at Strathclyde and the Office of the Chief Economic Advisor (OCEA) and the Scottish Government-funded Centre of Expertise in Climate Change, ClimateXChange. The improvement in modelling capability and scope has enhanced the process of policy formation and evaluation, as well as the outcomes from it. This has allowed for improved decision making in the Scottish Government, allowed significant budget savings, improved advice to Scottish Ministers, improved interaction with the Westminster Government and resulted in a more informed public debate on policy decisions.
The 2010 eruption of Eyjafjallajökull volcano, Iceland caused prolonged closure of European airspace, costing the global airline industry an estimated $200 million per day and disrupting 10 million passengers. We have developed and tested models that predict the dispersal of volcanic ash and developed instrumentation to monitor ash clouds during flight bans and used it to test the models. Our research played a key role in establishing the need for a flight ban and in the adoption of a more flexible approach to its staged lifting as the emergency continued. It also led to increased levels of readiness and to new emergency procedures being put in place across Europe which have minimised the economic costs and human inconvenience without an unacceptable rise in the risks to passengers and crew. The new procedures safely eliminated unnecessary disruption to flights in the latter days of the crisis and during the subsequent eruption of another Icelandic volcano, Grímsvötn in 2011.
Over one quarter of the estimated 886 million undernourished people in the world live in sub-Saharan Africa and their lives and livelihoods depend critically on rain-fed agriculture. However this region has lacked the equipment and the infrastructure to monitor rainfall. Over the past 20 years, the Unit's TAMSAT (Tropical Applications of Meteorology using SATellite Data and Ground-Based Observations) research group has developed a reliable and robust means for monitoring rainfall, appropriate for use in Africa. In addition, the Unit pioneered the use of such data to predict crop yields over large areas. TAMSAT data and methods are now used in food security (to anticipate drought and predict crop and livestock yields); in health planning (to predict outbreaks of rain-promoted diseases such as malaria); in aid (to guide the allocation and distribution of relief food and water); and in economic planning (to plan mitigation activities and investment in infrastructure). The Unit's programme of development and validation has extended the method to all of Africa, at all times of year. Our work with national meteorological services in Africa has helped them to build their own capabilities and to both contribute to TAMSAT and exploit it. The data provided by TAMSAT has had major impact in increasing the resilience of African populations to weather and climate, saving and improving the quality of lives, and strengthening economies in developing nations.
Salford Business School researchers were commissioned by PA Sport, the sports division of the Press Association, the Football Association Premier League (FA), and FootballDataCo, which handles the rights to football data for the FA, to develop the quantitative analysis and models for an objective index of football player performance. The official player ratings system of the English Premiership, Championship and the Scottish Premiership and first of its kind:
Research conducted within the School of Physical Sciences (SPS) at the University of Kent has led to the development and successful commercialisation of facial identification software named EFIT-V. First sold in 2007, this software is now used by more than 70 police forces internationally and has revolutionized the way eyewitnesses and victims of crime create computerised facial likenesses of offenders. These images are circulated to police intelligence units, and the general public, leading to the identification and arrests of offenders. Police Identification rates have jumped from 5% to 55% as a result of this software. With a current annual turnover exceeding £250K, which is projected to reach £600K by 2015, Kent spinout company Visionmetric has made significant impact with EFIT-V, and achieved a position of commercial dominance in the UK, and around the world.
Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.
Particulate Matter is now recognised as the air pollutant with the greatest public health impact, estimated to cost up to £8.5-20.2 billion per annum (in 2005).Roy Harrison has engaged closely with UK policy-makers for decades. This impact case study focuses specifically on the take-up of PM mass-closure techniques developed by Harrison's group into a UK policy-making tool called Pollution Climate Mapping (PCM). Work by the Harrison group forms the basis of the component dealing with airborne particles in the PCM model used by Defra. The work described in this case study has economic impact in the form of costs avoided by the UK national, devolved and local governments (reallocation of public budgets away from expensive air pollution monitoring and avoidance of EU financial penalties), public policy impact in the form of cost-effective delivery of air pollution mapping, and environmental impact in the form of traceable inclusion of research in government policies for air quality improvement.