Log in
Alliance researchers have demonstrated that it is possible to refurbish existing buildings, which make up over 90% of our stock of over 26m buildings, to achieve a reduction in CO2 emissions of up to 80% (domestic properties) and 50% (non-domestic). The research has underpinned a shift of emphasis by UK government from new to existing buildings and the formulation of incentives to encourage building owners to make energy-saving improvements. In partnership with not-for-profit, public and private stakeholders, it has been used by national and local agencies to highlight the potential of improving the energy performance of traditionally constructed, timber-framed and residential mobile homes and incorporated into practical guidance by the Chartered Institution of Building Services Engineers. It is also the technical foundation for an educational software package developed with 100 school children and teachers and praised as exemplary by Education Scotland.
This case study describes the national and international impact of research undertaken by Professor Chao, as part of an EU funded Framework 7 project, Digital Environment Home Energy Management Systems (DEHEMS). The project has improved existing household energy monitoring, tackling the issues of global warming and CO2 emission reduction in the domestic sector. The research has directly contributed to the development of a product called EnergyHive, subsequently marketed by Small to Medium-sized Enterprise (SME) Hildebrand Ltd, who was the industrial partner in the DEHEMS consortium. The research has delivered the following:
Beneficiaries of the research and the subsequent impact include: a commercial business, domestic energy consumers, UK and international energy companies and local authorities.
Professor Gupta, an internationally recognised expert on architecture and climate change, has developed an innovative software model for carbon counting (DECoRuM® model) and climate change adaptation (DECoRuM® adapt) of existing housing. The combination of Geographic Information System techniques, energy efficiency and climate change adaptation measures has enabled DECoRuM® model to provide a range of environmental, public policy and practice benefits to homeowners, communities, local authorities and architects. These benefits have been realised through refined global common carbon metrics promoted by UNEP, BSI standard and industry guidance, as well as achievement of real energy and CO2 emission reductions from low carbon refurbishment, leading to improved building energy performance.
The work described here has impacted on European policy and standards concerning energy efficiency in Building Services.
The impact arises from two Welsh School of Architecture led and European Commission funded projects, HARMONAC (focussed on inspection of air-conditioning systems) and iSERV (focussed on automatic system monitoring and feedback). These pan-European projects demonstrate achieved energy savings of up to 33% of total building electricity use in individual buildings, and potential savings up to €60Bn. These projects demonstrably impacted the recast European Energy Performance of Buildings Directive (EPBD) and the revision of EU Standards (European Committee for Standardisation (CEN)).
A 2008 `options appraisal' by the Mackintosh Environmental Architecture Research Unit (MEARU) for Cube Housing Association (CHA) impacted directly on practice apropos eliminating `fuel poverty' (energy cost >10% disposable income) and complying with the Scottish Housing Quality Standard (SHQS) — this achieved by a major combined heat and power (CHP) installation linked to thermal upgrading (complete 2012). This tangible impact for CHA in turn helps Scotland to achieve its CO2 reduction targets alongside improved public health. The initial research work by MEARU for CHA followed many years of work with energy efficiency and environmental quality in housing (2 below).
Ground-breaking research in the field of Dynamic Insulation (DI) at Aberdeen University has contributed to international efforts to combat climate change through the reduction of the carbon emissions associated with the heating, ventilation and air conditioning of buildings. Through the establishment of a spin-out company and the development of the world's first modular DI product, jobs have been created and developers have been able to use the first commercially available DI products and systems to meet strict new environmental targets. The success of such projects has led to greater public awareness of the issues around global warming.
Research carried out at the University of Greenwich has explored issues surrounding sustainable living and climate change mitigation in existing buildings. The research identified the relationships between people and the built environment and developed a series of behavioural interventions to inform building users of the energy they were consuming and provide guidance on how this could be reduced. The socio-technical relationships were used in a public engagement programme to promote debate amongst the over-65s and the interventions by Registered Social Landlords to support behaviour change and reduce energy consumption in domestic buildings. The outputs have also been used to inform Social Housing policy development.
Research at the University of Nottingham into the use of phase- change materials as a means for heating and cooling buildings has resulted in the development of COOL-PHASE®, a product which is sold by Monodraught ltd. The system was launched in 2008 and has been installed in 136 buildings in the UK. COOL-PHASE® underpins the long-term growth strategy for the company and Monodraught has invested in employing 3 new staff and £250k in capital expenditure to make the unit suitable for mass production.
Research at Loughborough University during the period 2008-2013 in the areas of control, commissioning and design of advanced naturally-ventilated buildings has led to:
A subsequent KTP project with SE Controls has led to:
Research at the University of Southampton, into the engineering of complex socio-technical systems, has underpinned new technologies in the area of intelligent energy management, and made Professors Nick Jennings and Alex Rogers trusted sources of advice for energy policymakers, key stakeholders and industrial researchers. The work has had an economic, environmental and societal impact: it has shaped R&D strategies of leading British companies like BAE Systems and Secure Meters; the launch of iPhone apps and websites have supplied private and industrial users with personalised data regarding their energy use, resulting in cost savings and reductions in carbon emissions; it has enabled charities to provide energy-saving advice to households directly; and has won an international technology showcase competition leading to a spinout and commercialisation of research.