Log in
The unique application of combinatorial chemistry in materials science at Southampton has directly underpinned the success of University spin-out, Ilika Technologies. Since 2008, the breadth of applications of the research has allowed Ilika:
Between 2008 and 2012, Ilika enjoyed considerable growth, doubling employment to 35 staff, increasing turnover by approximately 25% annually, and floating on the AIM with a market capitalisation of £18.7 million.
The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.
The UCL Department of Chemistry has for many years run a far-reaching programme of outreach and public engagement that has deep roots in the department's research programme. Its schools outreach work has promoted chemistry and science among secondary school children, while contributions to blogs, newspapers, radio, and television have engaged diverse audiences from primary school children to the elderly. Millions of people have viewed television contributions, while tens of thousands have been reached in theatres and science fairs, with positive reviews and feedback confirming a stimulation of public interest in, and understanding of, chemistry.
This case study focuses on the use of hydrogen in a range of applications, developing the following techniques:
Demonstrating impact in the commercial application of the techniques in the energy, environment and chemical industries; resulting in commercially viable processes and products, generating economic benefit.
University of Nottingham researchers have been at the forefront in promoting and establishing Green Chemistry in developing nations. Working with and influencing colleagues and policymakers in both the UK and Africa, they have increased awareness of the importance of introducing sustainable technologies that meet local communities' needs. As a result, they have invigorated the chemistry teaching curriculum in Ethiopia, placing Green Chemistry at its core, and helped shape the approaches of professional bodies, including the Royal Society of Chemistry, for the benefit of the developing world. This has led to what the British Council has described as "a sense of empowerment and confidence" among Ethiopian chemists.
The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.
Research in the UAO has led to major advances in the technique of Atom Probe microanalysis. The UOA pioneered the concept of position sensitive detectors for Atom Probe instruments, generated the first 3D data and built the first prototype instruments. Following a series of patented advances and the formation of a spin-off company (subsequently incorporated into Ametek), research in the UOA has led directly to the sale of 45 Local Electrode Atom Probe (LEAP) instruments since 2008 with a value of $102M. These instruments have been used to provide atomic scale chemical information vital to the design of new commercial alloys and to safety cases for life extension of nuclear power plants.
University of Huddersfield research in physical organic chemistry has delivered economic, industrial and societal benefits. It has led to process improvements in chemical manufacturing, most notably in the optimisation of the synthesis of antisense oligonucleotides and in the use of liquid ammonia as a solvent. It has also led to the development of new inhibitors of bacterial β-lactamases for use as antibacterials. The research team's expertise has been reflected in the success of IPOS (Innovative Physical Organic Solutions), a unit established in 2006 to carry out research in process and other areas of chemistry for the chemical industry. IPOS expanded significantly from 2009 to 2013 and has now collaborated with more than 150 companies, many of them based in Yorkshire/Humberside where regeneration is critically dependent on the success of new, non-traditional, high-technology firms and industries. Through these collaborative projects, IPOS has contributed to the growth and prosperity of both regional and national industry.
XeraCarb Ltd is a spin-out company formed in 2011 to exploit a class of ceramic composite materials co-invented by Jones. These materials were first devised in 2008 via a Materials and Engineering Research Institute (MERI) Knowledge Transfer activity and developed from 2009 onwards through a series of UK Ministry of Defence (UK MoD)-funded research projects. XeraCarb was spun out after the underpinning research won a national award in 2011 as the most promising UK materials system for commercialisation. The applications for XeraCarb's materials range from body- and vehicle-armour to kiln furniture and wear-resistant components. The company has attracted significant venture capital investment and is valued at over £1m. It has set up an independent production facility, has appointed employees, has been awarded a TSB grant, has materials undergoing trials in respect of a number of applications, and has delivered its first orders.
Since the mid-1990s, the Materials and Structures Research Group has been conducting research into materials-joining processes, including metal-ceramic joining for high-temperature applications. The group's research on metal-ceramic interfacial relationships and metal-ceramic joining subsequently assisted Cambridge-based C4 Carbides to optimise metal-to-diamond brazing and develop cutting tools with improved quality and longer lifetimes. Since 2010 the company has also [text removed for publication]
This continuing collaboration has helped C4 Carbides secure a TSB smart award and begin its strategic shift from niche SME to mainstream supplier.