Similar case studies

REF impact found 13 Case Studies

Currently displayed text from case study:

New DNA forensics tools improve sustainable fisheries management and reduce wildlife crime

Summary of the impact

Application of Bangor's DNA forensic research has had major impacts on the management and control of illegal wildlife trade. After initial work providing evidence for criminal prosecutions with wider deterrent effects on wildlife crime, Bangor-led research went on to apply these techniques to trace fish (products) to their source populations to ban illegal, unreported and unregulated fishing practices. Since 2009, this work has improved stock management by the UK government and European Commission, directly affected the Common Fisheries Policy reform and has been implemented by the Marine Stewardship Council as a verification tool for correct labelling of products.

Submitting Institutions

Bangor University,Aberystwyth University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology

8 – Twenty-five years of Falkland Islands Fisheries assessment and management resulting in one of the best managed fisheries in the world and license revenue of tens of millions of pounds

Summary of the impact

Between 1987 and 2011, the Fish group at Imperial College London assisted the Falkland Islands Government by providing fisheries management advice as well as delivering seasonal licencing and fee analyses which determined the number and type of fishing licences allocated to commercial vessels operating in Falkland waters. The work of the Fish group had unprecedented economic, commercial and environmental impacts on the Falkland Islands, where between 50% and 75% of the annual revenue required to fund all infrastructure, research and development in the Islands is generated by the £20M income from the sale of commercial fishing licences. In 2006, the Falkland Islands changed from a seasonal fishing licensing system to a rights-based management system of Individual Transferrable Quotas (ITQs) for fishing companies. The move to ITQs, which was recommended by the Fish Group, generated revenue of £9.5 million in 2010 and the system will remain in place until 2031. During a transition period between 2008 and 2011, the Fish Group supported the planned hand-over of licencing and fee responsibilities to the Falkland Island Fisheries Department which continues to use the bio-economic and stock assessment models developed by the Fish Group at Imperial for the sustainable management of marine resources.

Submitting Institution

Imperial College London

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Biological Sciences: Ecology
Agricultural and Veterinary Sciences: Fisheries Sciences

Molecular Ecology and Conservation

Summary of the impact

Since 2008, the School of Environment & Life Sciences at the University of Salford has expanded its research in the field of population and conservation genetics, focusing on the application of molecular genetics and evolutionary theory on supporting the management of exploited living resources and conservation of endangered species and ecosystems.
Molecular Ecology and Conservation demonstrates the following impact:

  • Improving mechanisms for seafood authenticity and traceability, the identification of stocks and providing advice on their management;
  • Supporting the conservation of endangered boreal species and endangered amphibians:

Increasing consumer awareness of the environmental implications of food choices, improving consumer confidence and food management policy, supporting environmental management and biodiversity, and guiding international conservation policy and management processes.

Submitting Institution

University of Salford

Unit of Assessment

Biological Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Agricultural and Veterinary Sciences: Fisheries Sciences

Improving sustainability of UK salmon farming through replacement of marine fish oil while ensuring nutritional quality is preserved through maintenance of omega-3 levels

Summary of the impact

Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) are essential nutrients and have many beneficial effects on human health. Fish are the major source of omega-3 LC-PUFA in the human diet, and its level was maintained in farmed fish through the use of fish oil as a major component of extruded aquafeeds. Around 10 years ago it became clear that demand for fish oil would rapidly outstrip supply, limiting expansion of aquaculture activities, if fish oil use was not reduced. The challenge this presented was that alternatives to fish oil lack omega-3 LC-PUFA. However, replacement of fish oil with more sustainable alternatives is now standard practice in the industry. Research into fish oil replacement and omega-3 metabolism in the Nutrition Group, Institute of Aquaculture has been at the forefront of the scientific research in the UK and Europe that has ensured nutritional quality of farmed fish by developing alternative feed ingredients and feeding strategies that have maintained levels of omega-3 LC-PUFA despite radical changes to feed composition driven by sustainability and food security. This work culminated with recent demonstrations that farmed salmon can be net producers of marine protein (2010) and oil (2011).

Submitting Institution

University of Stirling

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Agricultural and Veterinary Sciences: Animal Production, Fisheries Sciences

Endocrine disrupting chemicals in aquatic ecosystems: Impacts on new policies and guidelines, and economic benefits for the UK.

Summary of the impact

Research led by Professor Charles Tyler at the University of Exeter has provided critical data on the widespread adverse oestrogenic effects of endocrine disrupting chemicals in wild fish populations in the UK. This has triggered the UK government to take action through investment in research and development of policies and guidelines. The research has led to world-wide recognition that endocrine disrupting chemicals are an emerging policy issue, a £40 million demonstration project with the UK government and water industry, and multi-million pound benefits to the UK in terms of improved water quality and safeguarding freshwater wildlife.

Submitting Institution

University of Exeter

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology
Agricultural and Veterinary Sciences: Fisheries Sciences

Evidence for the Harmful Effect of Stock Enhancement and Commerical Farming on Native Gene Pools of Atlantic Salmon and Brown Trout

Summary of the impact

The effects of accidental salmon farm escapes, intentional releases of non-native salmon and trout, and stocking of fertile farm-reared trout, on the genetic makeup, fitness and long-term viability of wild populations has been a matter of increasing concern over the past two decades. Ferguson and Prodöhl's group demonstrated that offspring of farmed, first and second generation hybrid and backcrossed salmon and trout showed reduced survival compared with wild native fish, and that repeated escape/introduction events can cause a reduction in the biological fitness of vulnerable wild populations leading to reductions in numbers and potentially to their extinction. These findings led directly to changes in regulations and guidelines by relevant major stakeholders including the Environment Agency (England & Wales), Wild Trout Trust, North Atlantic Salmon Conservation Organisation, World Wildlife Fund, and governments in Europe and North America.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Agriculture, Veterinary and Food Science

Summary Impact Type

Environmental

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology, Genetics

Improving fish health and quality using naturally derived products

Summary of the impact

Disease severely limits the expansion of aquaculture. Studies on the immune control of infection have led, in association with industry, to the promotion of disease control utilising 03b2-glucan feed supplements. Knowledge has, via Keele Water, informed infection control strategies used by UK fish farmers. Studies have provided a legacy of young scientists trained by industry and supported by European funding. Advances made have been embraced in the education of veterinarians in Germany and fish production in Eastern Europe. Close collaboration with government bodies and learned societies has ensured that the work has been recognised by policy makers within the fisheries sector.

Submitting Institution

Keele University

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Agricultural and Veterinary Sciences: Fisheries Sciences
Medical and Health Sciences: Immunology

Policy-making and species eradication: Protecting European biodiversity from the ecological impacts of non-native fish

Summary of the impact

Bournemouth University (BU) research delivers the evidence base on which to develop regulations, policy and management programmes to protect European biodiversity from the adverse impacts of non-native fish. It reveals where introduced non-native species have damaging impacts and, as in the majority of cases, where there is little ecological consequence but substantial socio-economic benefits. The research has been applied to EU risk assessment and quarantine measures for the management of non-native species. It also provides the scientific base for the Environment Agency's eradication of Pseudorasbora parva, more commonly known as topmouth gudgeon, from UK freshwaters. This is protecting a fisheries industry worth over £3 billion per annum.

Submitting Institution

Bournemouth University

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Environmental

Research Subject Area(s)

Environmental Sciences: Environmental Science and Management
Biological Sciences: Ecology, Genetics

Informing Global Improvements on the Welfare of Fish

Summary of the impact

This research programme has provided convincing evidence that fish perceive pain and has been instrumental in directly informing changes to experimental protocols and influencing welfare guidelines.

We use fish in a variety of ways — for food, farming, experimentation, as public exhibits, in recreational angling and as pets. Many of the procedures that fish are subjected to cause tissue damage that would give rise to the sensation of pain in mammals. This research programme uses techniques in neurobiology, physiology and animal behaviour to discover how the fish are affected by these procedures. This has not only improved the welfare of fish, but also influenced how the public views these animals through media dissemination.

Submitting Institution

University of Chester

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Societal

Research Subject Area(s)

Biological Sciences: Ecology
Medical and Health Sciences: Neurosciences

Models of the control of Koi Herpes Virus

Summary of the impact

Koi Herpes Virus is a notifiable disease in the UK which can cause serious economic losses in coarse and ornamental carp. It is a viral disease which is highly contagious and can cause 100% mortality in infected fish. In 2010, the Department for the Environment Food and Rural Affairs (DEFRA) made a policy decision, based on our mathematical modelling and computational work, that they would not attempt to eradicate the disease because it would not be cost effective. They used the model predictions to carry out an economic analysis which took into account the cost of the predicted number of outbreaks and the cost of surveillance. They concluded that the benefit of an eradication programme, over a time period of 20 years, would range between a net cost of £213m and a net benefit of £8.36m with their best estimate being a net cost of £5.48m (Section 5, reference 1, paragraph 1.6).

Submitting Institution

University of Stirling

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Economic

Research Subject Area(s)

Biological Sciences: Ecology
Agricultural and Veterinary Sciences: Fisheries Sciences

Filter Impact Case Studies

Download Impact Case Studies