Similar case studies

REF impact found 24 Case Studies

Currently displayed text from case study:

Revolutionising schools and public engagement with cosmology, relativity and gravitational-wave astronomy

Summary of the impact

University of Glasgow researchers have played a pivotal role in enhancing awareness and understanding of cosmology, relativity and gravitational-wave astronomy on the national and international stage.

  • The 'Astronomy's New Messengers' public exhibition on gravitational-wave astronomy has been displayed at international events that have attracted a total audience exceeding a million people. A survey conducted at the World Science Festival 2010 indicated that 89% of visitors found the exhibition had increased their interest in science.
  • The University of Glasgow has had a crucial influence on the redesign of the Scottish Higher and Advanced Higher Physics syllabus to include significant content on cosmology, relativity and gravitational astrophysics. In 2012 the revised Higher Physics pass rate was approximately 4% greater than that for the non-revised Higher, demonstrating significant impact in terms of pupil engagement and results.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Applications of microwave and mm-wave sources and amplifiers for the defence, security and health sectors

Summary of the impact

Radiation sources and amplifiers, in the spectral region from microwave to terahertz, are extensively used in UK industry and public sectors such as security, defence, health and the environment. Companies, including e2v Technologies plc. (e2v) and TMD Technologies Ltd. (TMD), have developed and sold new radiation products based on post-1996 research undertaken at the University of Strathclyde. Their devices accessed new frequency ranges with considerable increases in power and bandwidth. The designs were transferred to industry, where devices have been constructed, jobs created, policy changed and considerable investments made. These sources have had extensive beneficial impact through applications in defence, surveillance, materials processing, health sciences and environmental monitoring.

Submitting Institution

University of Strathclyde

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Three spin-out companies built on platform Lab-on-a-chip technologies deliver diagnostic tools for infection and disease

Summary of the impact

Fifteen years of research in advanced Lab-on-a-Chip technologies at the University of Glasgow has led to three spin-out companies: Mode-Dx, Clyde Biosciences and SAW-Dx. Since 2008 these companies have developed a range of products and services for the diagnostic screening of chronic diseases, for the detection of acute infections and for improving the drug discovery process. The three companies have secured a total of £2.3M in venture funding and secured key strategic collaborations with stakeholders including industry partners and the NHS.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Analytical Chemistry

Metamaterial systems and routing of elastic waves in engineered structures

Summary of the impact

It is well-known that certain bridges are susceptible to potentially dangerous uncontrolled vibrations; recent examples include London's Millennium Bridge and the Volga Bridge in Volgograd. Correcting such problems after the construction of the bridge can be extremely expensive and time-consuming. Research in the Department of Mathematical Sciences at the University of Liverpool has led to a novel approach for predicting such behaviour in advance and then modifying the bridge design so as to avoid it. During the period 2011-12 this research has been incorporated into standard design procedures by industrial companies involved in bridge design. There is an economic impact for the companies concerned (avoiding costly repairs after bridge construction) and a societal impact (improvements in public safety and also avoiding the inconvenience of long-term closure of crucial transport links).

The research is based on a novel, highly non-trivial approach that has been developed to study properties of elastic waves in complex engineered structures with a multi-scale pattern. The work has been taken up by the industrial construction company ICOSTRADE S.R.L. Italy, whose design engineer Dr Gian Felice Giaccu integrated the innovative research ideas into their standard design procedures for complex structures such as multiply supported bridges. Novel designs of wave by- pass systems developed by the Liverpool group have also been embedded in standard algorithms by the industrial software company ENGINSOFT, in the framework of a project led by their project manager Mr. Giovanni Borzi.

Submitting Institution

University of Liverpool

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering
Medical and Health Sciences: Neurosciences

Novel Quantum Cascade Laser technology leads to new products, processes and market opportunities

Summary of the impact

The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics, Other Physical Sciences

The Square Kilometre Array - in Africa, Australia and the UK

Summary of the impact

The international Square Kilometre Array (SKA) radio telescope, due for completion in the next decade, will be the world's largest astronomical instrument. It will be built by international industry at a cost of over €2B. The larger part will be sited in Africa (9 countries) with a complementary part in Australia. The impact to mid-2013 is on: i) international science policy and priorities (€26M); ii) multi-faceted human capacity building in Africa (401 bursaries); iii) business and employment involved in the construction of two large-scale SKA "precursor" instruments in South Africa and Australia (over €150M with 800 jobs in South Africa); iv) the local north-west economy (over €5M) where a new limited company to coordinate the SKA's design and construction has been established at Jodrell Bank.

Submitting Institution

University of Manchester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Other Physical Sciences
Technology: Communications Technologies

Guidelines and standards which improve design and safety of marine structures subject to steep wave impact.

Summary of the impact

Guidelines and standards underpinned by Strathclyde research have improved the design, assessment and the safety of marine structures subjected to wave impact in large steep waves. The guidelines and standards are widely used in the design of floating structures, particularly Floating Production, Storage and Offloading vessels (FPSOs) and offshore wind turbines. Since January 2008 the work has impacted the design, strength assessment and failure analysis of fixed offshore oil and gas platforms, renewable energy devices and ships. The guidelines and standards are used by designers to mitigate against damage caused by breaking wave impact, thereby improving the safety of mariners and offshore workers, reducing lost production due to downtime, and cutting the risk of environmental impact due to oil pollution. The research has also been used by Strathclyde researchers in industry-focussed studies, in legal work related to the loss of the oil tanker Prestige (2009-2013), in the assessment of the Schiehallion FPSO for BP (2010), and design of a Scottish harbour wave screen (2009) that allows ferries to access and stay in the harbour in more severe weather.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Oceanography
Engineering: Maritime Engineering, Interdisciplinary Engineering

Modern global telecom systems powered by technology from the University of Glasgow

Summary of the impact

Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.

Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

P11 - Metamaterials and transformation optics: commercial, communication and defence impacts

Summary of the impact

Metamaterials deliver electromagnetic properties not available in natural materials. Transformation optics replaces the ray picture of Snell's law with the field lines of Maxwell's equations and is an exact description of classical optics. These powerful concepts, originally developed by Prof John Pendry, have engendered massive interest in the electromagnetic community encompassing radio frequency (RF) through to optical applications. His advice is sought by numerous companies and these concepts are now filtering through into products. In the last 5 years there has been great involvement of industry and particularly of the defence establishment in the USA who run several multi mullion dollar programs on metamaterials based at DARPA, WPAFB and Sandia. A company, KYMETA, was formed in 2012 to market this technology with $12M of investment funding, and is developing a laptop-sized antenna that gives instant Internet hotspot access anywhere in the world, with an ultimate application allowing cheap and fast Internet connections for the everyday consumer. In the UK, BAE Systems is using metamaterials for several applications including compact, directional antennas.

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Optical Physics
Engineering: Materials Engineering

Advanced Radiometer Instrumentation for Earth Observation

Summary of the impact

Research on Frequency Selective Surface (FSS) structures has led to major advances in the design and manufacture of the world's most advanced payload instrumentation for use in Earth observation satellites. This technology has provided the core element of the radiometer instrumentation needed for more accurate global weather forecasts and better understanding of climate change. The advances described have made it possible to combine all of the different functions of the MetOP-SG radiometer into one instrument, thereby halving the footprint of the satellite payload resulting in a [text removed for publication] cost saving.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies