Similar case studies

REF impact found 44 Case Studies

Currently displayed text from case study:

From the lab to wind turbines and beyond… the global commercial impact of Aston’s fibre Bragg grating research

Summary of the impact

Aston's fibre Bragg grating research on optical sensing has had a global commercial impact, in particular the development of low-cost fibre FBG sensor interrogation methods. The work has been carried out with a diverse range of companies (including BAE Systems, Airbus, Insensys, Schlumberger) working across different sectors including oil and gas aerospace and marine. Specific impacts include the acquisition of 70% of the stock of Insensys Wind for US$15.7 million by Moog in 2009 and continuing employment by Smart Fibres, Moog Insensys and Astasense.

Submitting Institution

Aston University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Materials Engineering
Technology: Communications Technologies

Distributed Optical Fibre Sensors within the Oil and Gas Industry

Summary of the impact

Research into distributed optical fibre sensing undertaken at the Optoelectronics Research Centre (ORC) at the University of Southampton has had profound economic and environmental impact within the oil and gas industries in both extraction efficiency from existing reservoirs and improved safety performance and operation of three companies: Optasense, Stingray Geophysical and Schlumberger. Each of these companies have established highly competitive positions in the worldwide optical sensor market and collectively employ more than 160 people in the south of England, in their distributed sensing programmes having benefitted from the adoption of this new technology that contributes to the management of environmental risks and hazards.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

Microstructured Optical Fibres for Laser and Biomedical Applications

Summary of the impact

This research has led to the creation of new business sectors in laser development for medical and healthcare applications, which has enabled the creation of a world-wide market worth US$96 million in 2011, and a local spin-out, Fianium Ltd, which now has more than 50 employees and an annual turnover of around £10 million. Exploiting a radically new optical component invented at the University of Southampton, the microstructured optical fibre (MOF), this research has led to economic benefit through the creation of hundreds of jobs worldwide, and enabled the development of new diagnostic and medical technologies.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Engineering: Materials Engineering

Design and manufacture of composite wing structures - optimising performance and improving process

Summary of the impact

The A350-XWB is the first Airbus airliner to have composite wings, thereby reducing structural weight compared with the current generation of metallic wings. With over 700 orders for the aircraft, the company has placed great emphasis on the need to maximise performance benefits whilst mitigating risk associated with manufacture of the all-new wing. The Bath Composites Research Unit has supplied underpinning research to:

(1) Develop an algorithm that has been used to design the composite wing skins for optimised performance;

(2) Analyse the laminate consolidation process for the wing spars.

The impact of (1) is a direct saving of 1.0 tonne of fuel per typical flight compared with current metallic skins. This represents a total fuel saving of around 40,000 tonnes, over the design life of each aircraft. The impact of (2) is the achievement of satisfactory part quality for current production rates of spars valued at £1M each when equipped.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Advancing Clean Energy Research and Biosecurity through Novel Bragg Grating Technologies

Summary of the impact

Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Communications Technologies

Ytterbium-doped fibre amplifier

Summary of the impact

Researchers at the University of Southampton were the first in the world to introduce ytterbium-doped silica fibre as an optical gain medium. The work led to the creation of a new business sector around efficient industrial fibre lasers, which enable new manufacturing processes in the automotive, aviation, defence and medical device industries, with a reduction in carbon footprint relative to earlier technologies. The economic impact of this work includes the UK foothold in the $2 billion global industrial laser market through the success of two spin out companies — Fianium and SPI Lasers — with a combined turnover of £50 million, employing close to 300 people

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Optical Physics, Other Physical Sciences
Technology: Communications Technologies

Growth and success of wireless technology company Zinwave Ltd

Summary of the impact

Zinwave Ltd has introduced wideband distributed antenna systems (DAS) to the global marketplace, with systems deployed in Europe, the USA, Australia, China and the Middle East. Zinwave, a company founded to exploit the underpinning research, [text removed for publication] employs 25 staff. The first sales were recorded in 2008 and Zinwave's annual revenue has grown tenfold since then, [text removed for publication]. The Zinwave 3000 system is the only DAS on the market able to carry a wide range of wireless services on a single optical fibre and the company has built up a global network of more than 40 partners to integrate its systems, which are used in hospitals, stadiums, airports and power stations, among others. In 2012, Verizon, the USA's largest mobile operator, selected Zinwave to supports its 4G network rollout in the USA.

Submitting Institution

University College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Data Format
Engineering: Electrical and Electronic Engineering
Technology: Communications Technologies

High Power Fibre Lasers

Summary of the impact

High power fibre laser research undertaken at the University of Southampton has led to the creation of a new business sector in the generation of highly efficient and highly practical fibre laser technology. This has revolutionised areas of industrial material processing and enabled the development of specialist components for high-end industries (such as aviation and defence) as well as an array of new medical devices, procedures and manufacturing technologies. The research is also directly responsible for the commercial success and sustained growth of a spin-out company, SPI Lasers Ltd, which has an annual turnover of over £40 million and employs more than 250 people in the Southampton area.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Technology: Communications Technologies

3. Practical Waveform Engineering - Reshaping Today's Communication Systems

Summary of the impact

Practical Waveform Engineering, developed at Cardiff, is having a major impact on how modern- day microwave power amplifiers are designed, delivering real competitive advantages for global communications companies such as Nokia-Siemens-Networks and M/A-COM.

Economic impact is through reduced time-to-market and lower design costs, leading to high- performance power amplifier products. Examples include $40M revenue and employment of additional staff for M/A-Com, and the successful spin-off company Mesuro Ltd., generating revenue in excess of £2.5M.

Impact on practice is through successful demonstration of new device technologies and amplifier architectures, the introduction of PWE-based CAD models, and most significantly, the introduction of the "Cardiff Model" into mainstream simulation tools.

Environmental Impact is by improving the efficiency of power amplifiers and significantly reducing the carbon contribution of mobile communications systems, translating into savings of approximately £2.5M/year and a 17 kiloton reduction in CO2 emission for a typical EU network.

Submitting Institution

Cardiff University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Technology: Communications Technologies

Optical OFDM Transceiver Development and Commercialisation

Summary of the impact

Pioneering research at Bangor on the advanced communications technology termed Optical Orthogonal Frequency Division Multiplexing (OOFDM) has enabled industrial impact with global implications. OOFDM was a candidate technique for the ITU-T G989.1 NG-PON2 and the IEEE 802.3bm standards and is currently under consideration by the IEEE 802.3 400Gb/s Ethernet Study Group. Supported by 8 patent families and first-phase funding of £1.1M, in 2013, the pre-revenue Bangor University spin-off company Smarterlight Limited, was established. Smarterlight has deployed services to several international telecommunications companies to develop advanced solutions for access optical networks and data centres.

Submitting Institution

Bangor University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Data Format
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies