Log in
Wide Chord Fan Blades provide a key competitive advantage for Rolls-Royce's £8.6bn aero-engine business employing 1500 staff. In service, blades experience massive loads and high-frequency vibration, creating the potential for failure. In response to blade-off events on the Trent™ 800 engine, Rolls-Royce (RR) urgently needed a means of inhibiting fatigue crack growth, and selected laser shock peening (LSP). Research in the UoA, elucidating the mechanism and outcomes of LSP, provided critical scientific underpinning for its introduction into the production process for the Trent™ 800 and, subsequently, other engines. Further the UoA now provides manufacturing process QA. Orders for the new Trent™ XWB engine, relying on LSP, exceed £60bn, with partners The Metal Improvement Company establishing dedicated LSP treatment facilities for RR in the UK (with 30 employees) and Singapore.
The lifetimes of Hartlepool and Heysham I nuclear power stations have been extended from 2011 to 2019 as a direct result of our research into the development and application of new measurement techniques for the accurate determination of residual stresses. These life extensions are contributing to the health of the UK economy, maintaining jobs, ensuring security of electricity supply, and deferring the need for decommissioning and replacement of two nuclear power stations at a cost of several billion pounds each. The electricity generated during the life extension period has a market value of over £8 billion. New numerical modelling methods, underpinned by our measurements, are now used by the nuclear industry in life assessment procedures.
Research at Portsmouth has had a major impact on risk reduction, improved service life and reduced inspection/maintenance costs of safety critical and expensive fan and compressor components in military and civil aero-engines, as demonstrated particularly by the Liftfan Blisk manufactured by Rolls-Royce.
The research outcomes have also impacted on the specification of design stress levels by Rolls-Royce and MOD for aerofoils susceptible to FOD, enabling damage size inspection limits to be established at higher and more economic levels. The research has also provided increased confidence in the application of weld-repair of FOD and of surface treatment using Laser Shock Peening against FOD.
This prize-winning outreach project exploits our capability in 3D X-ray imaging to showcase our world-leading research activities in aeroengine materials and manufacturing processes, stimulating young people's interest in science and technology by challenging them to design an engine of their own. Involving an extensive schedule of public events, workshops and activity days, as well as a permanent exhibit at Manchester's Museum of Science & Industry, the project has engaged and enthused hundreds of thousands of members of the public. These outreach activities were recognised by the Royal Academy of Engineering through the award of its Nexia Solutions Education Innovation prize.
Research at Portsmouth has significantly improved the understanding of damage tolerance under creep-fatigue-oxidation conditions experienced in aero-engine components. The understanding has been developed through research on a new-generation disc materials including U720Li and RR1000, which have since been used in Rolls-Royce engines including Trent 900 in Airbus A380, Trent 1000 in Boeing 787 and the latest Trent for Airbus A350 XWB. These new materials have enabled aircraft to operate more efficiently at higher temperatures, with a major impact on CO2 emission and a significant impact on economy due to the new market opportunities and the reduction of operating costs.
Residual stresses are the stresses locked into a component during manufacture. It is essential that the magnitudes of these residual stress fields are known as they may combine deleteriously with applied loads. This can lead to premature failure, of a component or structure, at loads the designer would otherwise view as safe. Researchers at Bristol have developed a residual stress measurement technique called deep-hole drilling, which allows measurements of residual stresses both near the surface and throughout the thickness of the specimen, even for very large components which other methods are unable to measure. Veqter Ltd was created in 2004 as a University spin-out company to provide deep-hole drilling residual stress measurements for industry. The company has grown [text removed for publication]. Primarily, Veqter is a service company, undertaking laboratory and on-site residual stress measurements on safety-critical components using hardware and analysis algorithms developed at the University. It is the only company worldwide that offers this facility and its customer base includes EDF Energy, the Japan Nuclear Energy Safety Organisation, the US Nuclear Regulatory Commission and Airbus. Veqter's measurements allow these companies to better understand the structural integrity of safety-critical plant.
Research at the University of Manchester has supported the development of inertia and linear friction welding of high temperature materials for aeroengine application. The research has guided process parameter development and led to deployment of these new welding techniques at Rolls-Royce plc. In particular, inertia friction welding is now used in modern gas turbine engines, such as the Trent 900, which powers the A380, Trent 1000 for the Boeing 787 and Trent XWB for the Airbus A350. In addition, research has enabled blisk technology (welding of blades on disks), which has delivered up to 30% weight saving on critical rotating components.
Our research has enhanced neutron diffraction instruments worldwide for strain measurements on industrial engineering components, moving the technique from a scientific to an engineering tool. We led the £3.5m consortium which designed and built the world's first neutron diffractometer optimised for engineering measurements (ENGIN-X at the UK ISIS neutron source). The Strain Scanning Software (SScanSS) we developed for experiment visualization, simulation and control vastly improved the utility of the instrument to execute engineering residual stress measurements in complex structures and is now adopted at eight facilities worldwide. Numerous multinational companies including General Motors, John Deere, Airbus, Tata Steel and Pacific Rail Engineering have used the methods from our research to support their development programmes.
This case study deals with research undertaken at Plymouth University leading to the development of an innovative friction stir welding process (friction hydro-taper pillar processing, FHPP) and a bespoke welding platform that improves the assessment and repair methodology for creep damaged thermal power station components. This technology, developed in collaboration with Nelson Mandela Metropolitan University and with industry investment, enables power station engineers to extend the life of power generating plant leading to multi-million pound cost savings (over £66M in direct financial savings are demonstrated in this case) plus significant safety and societal impacts. It has been patented in South Africa and a spin-off company has been formed.
Please note that economic impact values were achieved in Rand (R) but are expressed in £ and therefore worth less in £ today than during the period when the stated impact was achieved.
Semiconductor wafers are subject to damage from misaligned handling tools, leading to cracks. Most of these are benign, but a few propagate to cause silicon wafer breakage during high temperature processing, leading to losses in production time costing millions of dollars per year. Research in Durham showed that X-ray Diffraction Imaging can be used to identify which cracks will catastrophically fail. As a consequence, Jordan Valley UK Ltd has designed and already sold over £M [text removed for publication] worth of X-ray imaging tools to the semiconductor industry. The company identifies this product as being critical to its continuation, safeguarding more than 25 jobs, and growth over the past 2 years.