Log in
International trade policy is central to economic and political relationships between countries. Specialists from Sussex developed a method and software, TradeSift (see www.tradesift.com), to analyse trade policy options simply, and have delivered reports and capacity building programmes that have influenced decision-makers engaged in regional integration in the EU, Asia, and Africa. The UK government and the European Commission have funded trade policy evaluation studies from the University and the associated spin-off company (InterAnalysis Ltd) using TradeSift. There have been more than 20 training courses, for over 400 participants, from 70 countries. The beneficiaries are the participants, their employers and civil society.
Since 2008, statistical research at the University of Bristol has significantly influenced policies, practices and tools aimed at evaluating and promoting the quality of institutional and student learning in the education sector in the UK and internationally. These developments have also spread beyond the education sector and influence the inferential methods employed across government and other sectors. The underpinning research develops methodologies and a much-used suite of associated software packages that allows effective inference from complicated data structures, which are not well-modelled using traditional statistical techniques that assume homogeneity across observational units. The ability to analyse complicated data (such as pupil performance measures when measured alongside school, classroom, context and community factors) has resulted in a significant transformation of government and institutional policies and their practices in the UK, and recommendations in Organisation for Economic Co-operation and Development (OECD) policy documents. These techniques for transforming complex data into useful evidence are well-used across the UK civil service, with consequent policy shifts in areas such as higher education admissions and the REF2014 equality and diversity criteria.
Targeted Projection Pursuit (TPP) — developed at Northumbria University — is a novel method for interactive exploration of high-dimension data sets without loss of information. The TPP method performs better than current dimension-reduction methods since it finds projections that best approximate a target view enhanced by certain prior knowledge about the data. "Valley Care" provides a Telecare service to over 5,000 customers as part of Northumbria Healthcare NHS Foundation Trust, and delivers a core service for vulnerable and elderly people (receiving an estimated 129,000 calls per annum) that allows them to live independently and remain in their homes longer. The service informs a wider UK ageing community as part of the NHS Foundation Trust.
Applying our research enabled the managers of Valley Care to establish the volume, type and frequency of calls, identify users at high risk, and to inform the manufacturers of the equipment how to update the database software. This enabled Valley Care managers and staff to analyse the information quickly in order to plan efficiently the work of call operators and social care workers. Our study also provided knowledge about usage patterns of the technology and valuably identified clients at high risk of falls. This is the first time that mathematical and statistical analysis of data sets of this type has been done in the UK and Europe.
As a result of applying the TPP method to its Call Centre multivariate data, Valley Care has been able to transform the quality and efficiency of its service, while operating within the same budget.
With global demand for energy ever increasing, environmental impact has become a major priority for the oil industry. A collaboration between researchers at the University of Glasgow and Shell Global Solutions has developed GWSDAT (GroundWater Spatiotemporal Data Analysis Tool). This easy-to-use interactive software tool allows users to process and analyse groundwater pollution monitoring data efficiently, enabling Shell to respond quickly to detect and evaluate the effect of a leak or spill. Shell estimates that the savings gained by use of the monitoring tool exceed $10m over the last three years. GWSDAT is currently being used by around 200 consultants across many countries (including the UK, US, Australia and South Africa) with potentially significant impacts on the environment worldwide.
A Portsmouth team has helped revolutionise how flight data from aircraft flight recorders is being analysed. This has improved the corporate performance of a leading UK company in a globally competitive market by helping it expand its business in the UK and to subsequently compete in the dynamic North American market. Historically, data was manually evaluated on a flight by flight basis. Research by the Portsmouth team means such data can now be analysed automatically by artificial intelligence (AI), saving significant man-hours, and allowing the company to diversify domestically into a related market and to expand internationally. The techniques developed were subsequently applied in a new market, enabling the new corporate partner to realise savings estimated at £100,000 p.a.
The Scottish Longitudinal Study (SLS) is a pioneering study, combining census, civil registration, health and education data (administrative data). It has established an approach that allows the legal and ethical use of personal, sensitive information by maintaining anonymity within the data system. This approach has become a model for the national data linkage systems that are now being established across the UK. The SLS has also enabled policy analysts to monitor key characteristics of the Scottish population in particular health inequalities (alerting policy makers to Scotland's poor position within Europe), migration (aiding economic planning) and changing tenure patterns (informing house building decisions). Finally, the study has become fully embedded in Scotland's National Statistical agency, allowing it to produce new informative statistical series.
The petrochemical industry is eager to develop advanced fuels which improve fuel efficiency both for economic and environmental reasons. Statistics plays a crucial role in this costly process. Innovative Bayesian methodology developed by Gilmour was applied at Shell Global Solutions to data from fuel experiments to solve a recurring statistical problem. The usefulness of this approach to the wider petrochemical industry has been recognized by the industry-based Coordinating European Council (CEC) for the Development of Performance Tests for Fuels, Lubricants and other Fluids, who in their statistics manual have included Gilmour's method as an alternative to procedures in the ISO 5725 standard.
Amrita Narlikar has made a systematic analysis of developing countries' coalition and bargaining strategies in the General Agreement on Tariffs and Trade (GATT) and the World Trade Organization (WTO) which has provided practitioners with an analytic toolkit to navigate complex political economy issues. Key negotiators refer to this work as they develop their coalition strategies, thus helping with the empowerment of developing countries. Expert attempts to reform the WTO have utilised the institutional analysis conducted. The value of the research is recognized by practitioners from developing countries and by others aiming to resolve multilateral deadlocks.
Our research team has developed new approaches to classifying demand series as `intermittent' and `lumpy', and devised new variants of the standard Croston's method for intermittent demand forecasting, which improve forecast accuracy and stock performance. These approaches have impacted the forecasting software of Syncron and Manugistics, through the team's consultancy advice and knowledge transfer. Subsequently, this impact has extended to Syncron International and JDA Software, which took over Manugistics. These companies' forecasting software packages have a combined client base turnover of over £200 billion per annum, and their clients benefit from substantial inventory savings from the new approaches adopted.
Research conducted in UCL's Department of Statistical Science has led to the development of a state-of-the-art software package for generating synthetic weather sequences, which has been widely adopted, both in the UK and abroad. The synthetic sequences are used by engineers and policymakers when assessing the effectiveness of potential mitigation and management strategies for weather-related hazards such as floods. In the UK, the software package is used for engineering design; for example, to inform the design of flood defences. In Australia it is being used to inform climate change adaptation strategies. Another significant impact is that UCL's analysis of rainfall trends in southwest Western Australia directly supported the decision of the state's Department of Water to approve the expansion of a seawater desalination plant at a cost of around AUS$450 million. The capacity of the plant was doubled to 100 billion litres per year in January 2013 and it now produces nearly one third of Perth's water supply.