Log in
CASTEP is a parameter-free and predictive quantum mechanical atomistic simulation code developed by Professor Payne in the Department of Physics at the University of Cambridge. CASTEP has been sold commercially by Accelrys since 1995, with more than 800 industrial customers using the package. As part of Accelrys' Materials Studio, it can be used by non-experts to determine a wide range of physical and chemical properties of materials. Companies can thus perform `virtual experiments' using CASTEP. As quantum mechanical simulations can be cheaper and more flexible than experiments, CASTEP invariably reduces costs and accelerates product development.
Effective industrial design and simulation require efficient and versatile computing systems. As a result of research performed by our team experienced in High Performance Computing (HPC), novel software structures and aligned hardware architectures have led to significant benefits to the energy supply industry and to microprocessor manufacturers.
As a result of our research with supercomputing, simulation times for electric field patterns in power components have reduced more than 30-fold, with accurate complex 3-D outputs for an increased range of configurations, thereby enabling our partner company to achieve results not possible with commercial software and to reduce product development costs by $0.5M - $5M p.a.
Our research has been incorporated by Intel into their numerical libraries and now made available to the general public supported by their latest processor architectures. Intel now has a 82% share of processors, according to the November 2013 Top500 list.
A computer program, CASTEP, has been developed to use quantum mechanics to calculate the structure and properties of materials. The code is distributed commercially via Accelrys Inc. with sales, for example, in the automotive, electronics and pharmaceutical industries in excess of £1m per year since 1998, accelerating to over £2.5m per year recently and total sales (late 2012) exceeding $30m. Commercial applications include designing new battery materials and electrodes to improve the performance of electric cars (Toyota), integrating organic electronic materials for light-weight flexible displays (Sony), and developing new catalysts for hydrogen-powered fuel cells (Johnson-Matthey).
High Performance Computing (HPC) is a key element in our research. The Particle Physics Group has accumulated expertise in the development and optimisation of coding paradigms for specific supercomputer hardware. Our codes are deployed on supercomputers around the world, producing high-profile research results. We have developed a simulation environment, BSMBench, that is, on the one hand, flexible enough to run on major supercomputer platforms and, on the other hand, pushes supercomputers to their limits. These codes are used by IBM and Fujitsu Siemens for benchmarking their large installations and mainframes. The third party company BSMBench Ltd has commercialised the usage of our codes for analysing and optimising HPC systems of small and medium-sized enterprises.
This case study describes the development, application and commercialisation of an open source tool, BSMBench that enables supercomputer vendors and computing centres to benchmark their system's performance. It comprehensively informs the design and testing of new computing architectures well beyond other benchmarking tools on the market, such as Linpack.
The significance of our code is that, unlike other benchmarking tools, it interpolates from a communication- to a computation-dominated regime simply by varying the (physics) parameters in the code, thus providing a perfect benchmark suite to test the response of modern multi-CPU systems along this axis. The impact of this work has great reach: a start-up company, BSMbench Ltd, has been founded to develop and commercialise the software; adopters have included IBM - one of the giants of the supercomputer world (where it uncovered errors in their compilers); it has been deployed by Fujitsu to validate its systems, by HPC Wales, a multi-site, commercially focussed national computer centre and by Transtec, an HPC company employing over 150 staff; and tutorial articles about BSMBench have appeared in magazines such as Linux Format.
This software tool spawned from our research into "Beyond the Standard Model" (BSM) physics which aims to understand the Higgs mechanism in particle physics at a fundamental level. This involved simulating quantum field theories using bespoke code on some of the fastest supercomputers on the planet.
In the 1990s Dr D Moore, who has extensive experience in fluid dynamics, worked with collaborators at the US Naval Research Laboratory (NRL) on parallelising an ocean modelling code. This resulted in the Navy Layered Ocean Model (NLOM) and later the Hybrid Coordinate Ocean Model (HYCOM). NLOM and HYCOM, which were/are distributed through the NRL and HYCOM consortium, are open access ocean modelling codes that are used to forecast ocean currents. They have proved particularly impactful for the forecasting of ocean oil spills and the corresponding management of the environmental risk. NLOM and/or HYCOM have been used extensively in the Deepwater Horizon oil spill in 2010 as well as the Montara Well Release oil spill in Australia in 2009, providing valuable forecasts to assist with the response to the disasters.
Durham researcher, Prof Stewart Clark, is one of the six original co-developers of the Castep software package which calculates the electronic, physical and chemical properties of materials from first principles. Castep was written to solve a variety of research problems from semiconductor devices and liquid crystal displays, to the behaviour of Earth minerals under very high pressure, molecular dynamics and biological systems. The software package was commercialised for use in industry under license by Accelrys Inc., where it is bought and used by ~1000 high-tech companies for development of new materials in chemical, pharmaceutical, auto and jet engine manufacturing industries. Total sales revenue for Accelerys from the Castep code is in excess of $30M.
A software package called CPO has been developed that simulates the motion of charged particles in electromagnetic fields. More than 200 benchmark tests have established CPO as the gold standard in low-energy charged-particle optics. A spin-off company was formed to market CPO, [text removed for publication]
Grid computing research conducted by the High Energy Physics (HEP) Group at the University of Cambridge, Department of Physics has enabled software company IMENSE to develop and commercialise a range of content based image recognition products. The research gained substantial media interest and was featured at the BA Festival of Science 2008.
Spatial decomposition methods have been extended to apply to spatial, scale, and temporal domains as a result of work at the Numerical and Applied Mathematics Research Unit (NAMU) at the University of Greenwich. This work has led to a numerical framework for tackling many nonlinear problems which have been key bottlenecks in software design and scientific computing. The work has benefitted the welding industry in the UK because these concepts are now embedded, with parallel computing, in the industry's modern welding design process software.