Log in
UCL research findings about the source, transport and fate of arsenic in sediments exploited for water supply in the Bengal Basin have underpinned the development and implementation of policy by the Bangladesh government, international donors and non-governmental organisations (NGOs), and led to improvements in public health security across southern Bangladesh. By demonstrating that arsenic pollution in Bangladesh is not caused by irrigation pumping, the research countered popular demands and government intentions to curb irrigation, thereby supporting the country's continued food-grain self-sufficiency. Subsequent UCL explanations of the geochemical and hydraulic processes controlling groundwater arsenic have underpinned further revision of the government's strategies for monitoring groundwater and mitigating the crisis; the resultant reduction in arsenic exposure among approximately 10 million people has significantly enhanced public health security.
This case study describes how basic research to develop analytical methodologies for measuring inorganic arsenic in food, and its subsequent application to rice and rice-based food commodities, led directly to proposals to establish global agreements describing the maximum permissible level of a class I carcinogen, inorganic arsenic, in rice. The impact of the research conducted in Aberdeen is still to be fully developed, but as a result of our research has been identified as absolutely pivotal by food standards agencies in China, USA, the UK, and the European Union, in leading to policy decisions and changes to established practice amongst policy makers under the leadership of the Food & Agriculture Organisation (FAO) of the UN and the World Health Organization (WHO).
Research by Professor Andrew Meharg at the University of Aberdeen was the first to show that rice constituted the major source of dietary exposure to inorganic arsenic, a class 1, non-threshold carcinogen, meaning that there is no dose that is risk-free. This research directly led to the European Food Safety Authority (EFSA) undertaking a major review of arsenic in foods. The EU, USA and WHO lack standards for arsenic in food, but all three are now actively seeking to set standards. Subsequent to the Aberdeen studies, the WHO withdrew its standard for arsenic Provisional Tolerable Daily Intake, considering it too high. Also, as a direct result of this work, the UK Food Standards Agency (FSA) has issued warnings that children under 4 should avoid rice milks because of their inorganic arsenic content.
Therefore claimed impacts are: affected health and welfare; enhanced awareness of health risks, altered dietary guidelines and changes to public and international policies and guidelines.
Carbon8 Systems (C8S) was founded on joint research between UCL and the University of Greenwich. The company has since developed a technology known as Accelerated Carbonation, which helps to reduce carbon dioxide (CO2) emissions by using carbon dioxide gas to treat waste materials and form artificial aggregate. In January 2013, C8S completed the first commercial plant for treating municipal solid waste incinerator (MSWI) fly ashes, designed to produce 1,000 tonnes per day of aggregate. Masonry products company Lignacite has also benefited commercially. It has used C8S's aggregate to develop an award-winning building block that captures more carbon dioxide than is emitted during its manufacture. Carbon8 Systems and its offshoot company Carbon8 Aggregates currently employ 11 people.
The demand for biofuels and alternative energies is increasing globally as a sustainable source of energy is sought for the future. Energy from crops is no longer a viable option due to the increase in wheat prices. Scientists at the BEST Research Institute have managed to bridge the gap by using novel and unique microwave systems for converting waste (biomass, food, animal) into energy. Our advances in this area have generated considerable interest from both national (e.g., United Utilities PLC, Balfour Beatty PLC, Biofuels Wales Ltd, Stopford Projects Ltd, Longma Clean Energy Ltd) and international (e.g., RIKEN-Japan, Fraunhofer-Germany, Sairem-France, Acondaqua-Spain, Ashleigh Farms-Ireland) companies. This has resulted in several collaborative, funded projects leading to industrial adoption of our microwave technologies.
Accelerated Carbonation Technology (ACT) is an innovative solution to several key environmental issues - CO2 emissions to the atmosphere, sustainable use of resources and the reliance on use of virgin stone for construction. ACT rapidly stabilises industrial waste recycling it into valuable aggregate, thereby reducing the amount going to landfill. ACT simultaneously captures the greenhouse gas CO2, via the rapid production of carbonate, which solidifies the waste into a hardened product. ACT has been commercialised through two spin-out companies leading to the first commercial production of carbon negative concrete blocks, taking hazardous waste from the bottom to the top of the waste hierarchy.
Research carried out by the University of Southampton has directly influenced the practice and behaviour of households, business, industry and government agencies. It has:
Research at Heriot-Watt University (HWU) has led to the development of a new continuous oscillatory baffled reactor and crystalliser technology. This has direct economic and environmental impact in the chemical, pharmaceutical and food industries. Waste is substantially reduced, while the scale of the equipment and plant is dramatically decreased, reducing time to market, start-up and maintenance costs and on-going energy usage. The reactor/crystalliser was taken to market through a spinout, NiTech Solutions Ltd, with a peak of 16 employees in the REF period. Genzyme (now Sanofi) has implemented NiTech's technology for biopharmaceutical manufacture since 2007, with multi-100 ton production and sales of multi-£100M pa. The technology now underpins the larger-scale joint venture, the Continuous Manufacture and Crystallisation (CMAC) consortium, launched in 2010. CMAC has attracted over £60M investment, much of it from three major industrial partners, GSK, AstraZeneca and Novartis, with additional second-tier investors. CMAC is accelerating the introduction of new process-intensification technologies in the process industries.
Research by Dr Switzer since 2009 has led to scale-up and commercialisation of a new smouldering combustion-based remediation technology: Self-sustaining Treatment for Active Remediation (STAR). STAR is sold commercially by SiREM, a division of Geosyntec Consultants, Inc. that has an exclusive worldwide licence. Since its commercial launch in 2010, STAR has [text removed for publication] and now employs 5 staff. Clean-up rates for STAR far exceed those of other methods, achieving 99.9+% destruction of contaminants in the soil and delivering cleaned soil suitable for reuse.