Similar case studies

REF impact found 31 Case Studies

Currently displayed text from case study:

1 Super-repellent surfaces by Plasmachemical techniques

Summary of the impact

Super-repellent surfaces created by plasmachemical techniques invented at Durham University have been exploited by P2i as the Ion-mask and Adiron brands and used to protect the surfaces of millions of products worldwide including: 3 million pairs of footwear (Timberland, Hi- Tec); 8 million mobile phones (Nokia, Motorola, Alcatel); 60% of the world's hearing aids (HLT, GN Resound); 55,000 feet of filter media (Porvair); and 100 million pipette tips (Eppendorf). This has earned P2i industry awards including the 2011 and 2012 International Business Award for "Most Innovative Company in Europe" and the "Global Business Excellence Award" 2012. The combined turnover of P2i since 2008 was ca. £20M, it received external investment of £31.75M and has created 115 new jobs. A DU IP-holding spin-out company, Surface Innovations, was purchased by P2i in 2010, and further applications of DU plasmachemical functionalization were commercialized by Dow Corning Plasma Solutions Ltd and exploited in-period.

Submitting Institution

University of Durham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

UOA08-07: Understanding solid-liquid reactions to improve manufacturing processes for agrochemicals at Syngenta

Summary of the impact

The cost of goods is an especially important issue in developing commercially available agrochemicals, which must be manufactured on a large scale. Richard Compton's research at the University of Oxford has led to a step change in the understanding of heterogeneous reaction mechanisms for liquid — organic solid or liquid — inorganic solid processes involved in large-scale manufacturing processes. Compton's work has had particular impact on optimising the processes used by Syngenta AG in its manufacturing of agrochemicals. Since 2008 the insights gained on inorganic-base dissolution have been of great benefit to Syngenta in its development of scalable robust manufacturing processes, particularly in relation to production of its fungicide Amistar and insecticide Actara, which are two of the world's largest selling products of this type. In 2012 Syngenta achieved total sales of over $ 14 billion, $ 4.8 billion of this from fungicide and insecticide revenues.

Submitting Institution

University of Oxford

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

A break-through corrosion inhibitor technology for heavily fouled systems

Summary of the impact

In partnership with the US company Nalco, the University's Surfactant & Colloid Group developed a new multifunctional technology (Clean n Cor) for the oil industry that both removes accumulated deposits at a metal surface (enabling "break-through" of corrosion inhibitor to the metal surface) and inhibits corrosion. Clean n Cor technology not only protects assets such as oil pipelines against corrosion but also maximises oil production through enhancing water injectivity (water flow per unit pressure drop). Since its launch in 2007, it is currently one of Nalco's fastest growing new technologies and is used at over 100 production locations worldwide.

Submitting Institution

University of Hull

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Other Chemical Sciences
Engineering: Materials Engineering

The development and commercialisation of a polymer that reduces microbial colonisation on dental surfaces, thus improving oral health

Summary of the impact

A team of Portsmouth researchers has developed a transparent polymer coating that prevents colonising bacteria from adhering to the surfaces of teeth. In addition to protecting from decay, the polymer coating has the added benefits of reducing dental erosion, alleviating root hypersensitivity, and inhibiting the staining of teeth. GlaxoSmithKline (GSK) has adopted this technology and the polymer has been successfully developed into a component of "next-generation" oral healthcare products.

Submitting Institution

University of Portsmouth

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Biomedical Engineering, Materials Engineering

Advances in Physical Vapour Deposition based on High Power Impulse Magnetron Sputtering (HIPIMS)

Summary of the impact

Ehiasarian and Hovsepian of the Materials and Engineering Research Institute (MERI) have achieved significant economic impact through industrial uptake of their innovations in High Power Impulse Magnetron Sputtering (HIPIMS). Exploiting these innovations, HIPIMS treatments have been used by manufacturers to enhance the surface properties of millions of pounds worth of products. Applications include industrial blades, components within jet turbines, replacement hip joints, metallised semiconductor wafers and satellite cryo-coolers. Patents based on Ehiasarian and Hovsepian's research have achieved commercial success. In the REF impact period, HIPIMS machines equipped to deliver MERI''s HIPIMS surface pre-treatment have achieved sales of over £5m, and income generated through SHU's HIPIMS-related licences has totalled £403,270. In 2010 Ehiasarian's group established the Joint Sheffield Hallam University-Fraunhofer IST HIPIMS Research Centre, the first such Centre in the UK. This has broadened the industrial uptake of MERI's HIPIMS technologies and stimulated a network of sub-system providers.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Developing methods to measure and quantify amorphous content in micronised particles, leading to improved manufacture and performance of inhaled drug delivery devices

Summary of the impact

Graham Buckton's work at the UCL School of Pharmacy has involved the development of new techniques, which are now industry standards, for assessing the amorphous content of materials in inhalation products. This work has had a significant influence on both manufacturing quality control and regulatory requirement, including informing FDA policy, to the effect that this type of assessment is now a requirement for licensing of powder inhalation medicines in the US and Europe. Benefits to drug companies include cost savings and more reliable production. Furthermore, the associated School of Pharmacy spin-out company, Pharmaterials, offers these assessments as a core part of its commercial activity, with a large client base of industrial partners who require such assessments for their inhalation and other products. The overall result of this work has been changes and improvements in the design, control and manufacture of inhalation products.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Optimising materials interfaces: Supporting the growth of an SME

Summary of the impact

Since the mid-1990s, the Materials and Structures Research Group has been conducting research into materials-joining processes, including metal-ceramic joining for high-temperature applications. The group's research on metal-ceramic interfacial relationships and metal-ceramic joining subsequently assisted Cambridge-based C4 Carbides to optimise metal-to-diamond brazing and develop cutting tools with improved quality and longer lifetimes. Since 2010 the company has also [text removed for publication]

This continuing collaboration has helped C4 Carbides secure a TSB smart award and begin its strategic shift from niche SME to mainstream supplier.

Submitting Institution

University of Hertfordshire

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Leaner, Greener Material Processing using Ionic Liquids

Summary of the impact

Ionic liquids (liquid salts) offer a more energy efficient and environmentally sustainable method of coating and processing metals than other more traditional methods. The generic technology developed at Leicester for plating and etching metals significantly decreases the power consumption, uses less hazardous chemicals and produces less aqueous waste. Many of the current acid-based liquids are restricted by legislation. The spin-out company, Scionix Ltd has developed numerous processes for metal processing through collaborative grants with the University of Leicester and the end users. Probably the largest impact has been through the development of a breakthrough technology for the electroplating of chromium removing the use of carcinogenic chromic acid. In April 2013 [text removed for publication] (one of the world's largest steel producers) signed an exclusive license with Scionix Ltd for [text removed for publication] using the ionic liquid technology developed at the University.

Submitting Institution

University of Leicester

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry

Improving performance of metal cutting tools for SNA Europe

Summary of the impact

SNA Europe is an international company employing 2,500 people in 20 countries. The Unit's research on the mechanics of metal removal and coating techniques had an impact on the company's product design, product performance and the manufacturing process. The benefits to SNA Europe since 2008 include:

  • 140 per cent per annum return on the research investment;
  • New sales of £2 million on 800,000 units/annum generated by the new products;
  • Reduced manufacturing costs and improved life time (hacksaw blades by 12 per cent and eight per cent, respectively; bandsaw blades by 11 per cent and nine per cent, respectively);
  • Reduced manufacturing time for the bandsaw and hacksaw blades by 10%.

Submitting Institution

Northumbria University Newcastle

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

Bringing nanomaterials research to industrial production

Summary of the impact

Nanomaterials research at Ulster into materials including diamond-like carbon (DLC) ultra-thin films, carbon nanotubes (CNT), graphene, silicon and metal oxide nanoparticles has resulted in direct uptake by major industrial manufacturers and led to a directly quantifiable socio-economic impact via added value, improved efficiencies and cost-savings and has secured or increased the employment of skilled engineering staff. Examples of this impact since 2008 include ceramic nanoparticles research in partnership with AVX Ltd that resulted in improved production efficiency processes (up 20%) and higher quality devices (up 10%). [text removed for publication] Research into ultra-thin DLC films, funded by Seagate, has led to their incorporation into magnetic media. [text removed for publication] Our nanoparticle research has attracted a new spin-in company SiSaf Ltd. (2009) and by incorporating NIBEC's expertise in nanomaterials into its business plan, the company was able to grow to a valuation of £3.5m and employ 7 people in skilled technical positions.

Submitting Institution

University of Ulster

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies