Log in
Research at the University of Reading into the origin of acrylamide, a neurotoxin and probable human carcinogen, in cooked cereal and potato products has provided crucial information for the food industry and government agencies. This has enabled important mitigation strategies to be developed. When acrylamide was unexpectedly discovered in food in 2002, there was no explanation for its origin. Pioneering research at Reading showed that it was formed during heating from naturally-occurring sugars and the amino acid asparagine. Because of this knowledge it was then possible to investigate factors affecting acrylamide formation and develop methods of mitigation. Subsequently investigations were undertaken worldwide, including work at Reading, to minimise the problem.
The University of Nottingham (UoN) has developed two novel food-allowed additives based upon xanthan gum. The generation of these structurally modified forms allow xanthan to be used more efficiently in food manufacturing applications and provide nutritional and health benefits. The invention of the new xanthans benefits the global food industry by facilitating new product development and formulation.
Researchers at the Scottish Universities Environmental Research Centre (SUERC, University of Glasgow) were the first to develop methods and equipment for screening foodstuffs for irradiation. Their work led to new UK and European standards (BS EN 1788 and BS EN 13751) which provide protection and reassurance to consumers. Professor David Sanderson's laboratory is recognised as the world-leader in the detection of food irradiation. The laboratory is also the only establishment to develop, design and sell photostimulated luminescence (PSL) systems to detect irradiated food. Since 2008 134 laboratories worldwide have taken up these UK-manufactured PSL systems to prevent irradiated ingredients from entering the food manufacturing chain.
Bangor research has significantly affected vegetable sourcing and distribution policies and practice of major fresh producers and UK supermarkets. Using a novel carbon footprinting model that incorporates all components of the production chain, the research demonstrated that footprints of vegetables vary with season, origin, production processes, transport and storage. The application of this model by industry partners has resulted in measures by food producers, suppliers and supermarkets to reduce carbon footprints, providing direct economic and environmental benefits through both waste reduction and technology implementation. Furthermore, the findings have impacted on sustainability policy development by the World Bank, international NGOs and Welsh Government, and influenced consumer awareness and debate on the environmental impact of food.
Economic impact is claimed through the growth of the biopharmaceutical spin-out company Q Chip Ltd. During the REF period, this has created 19 new jobs, £7.5M investment, a new Dutch subsidiary (Q Chip BV), and staged-payment, six figure contract sales to four major international pharmaceutical companies.
Q Chip has generated over £928K in contract sales from the pharmaceutical industry from 2008-2012, with further sales of over £1M projected in 2013-14.
Originally established by Professor David Barrow in 2003 from his micro technology research, Q Chip has developed new processes and miniaturised equipment to encapsulate materials, including drugs, within uniform polymeric microspheres as injectable therapeutics.
Three specific projects have addressed issues of resource utilisation and pollution related to poultry production. The novel form of silicon developed by the Poultry Research Unit (PRU) has been taken into the product portfolio of a FTSE100 company, AB Agri [Associated British Agriculture PLC] as a feed supplement to reduce poultry lameness. There are approximately 48 billion meat chickens produced globally every year but high incidence of lameness leads to economic loss and avoidable environmental pollution. In conjunction with ABAgri, PRU also produced evidence-based research resulting in a patent for recovering yeast from bioethanol production. The process is now being implemented by ABAgri to produce high-quality protein for poultry feed alongside bioethanol production to reduce the carbon footprint of both bioethanol and poultry meat production.
Research from Northumbria University's Business School into environmental issues surrounding food supply chains has informed national policy in relation to local food systems. Research showed that the argument for supporting local food systems to achieve greater environmental benefits through reduced "food miles" was misconceived particularly in light of an almost uncontested notion that the more "local" food produce is, the better it must be for the environment. Our research has challenged this notion, showing that deliberately localising the supply of any product when economies of scale are available defies basic theories of comparative advantage and creates greater, not less, environmental burden. This informed the Department for Food and Rural Affairs' (Defra) decision in 2010 not to implement policy interventions that would promote a more local food supply.
Evershed and his research group in The School of Chemistry, University of Bristol, have pioneered a suite of novel molecular and stable isotope analytical chemical techniques for provenancing amorphous organic residues in archaeology, particularly for the elucidation of ancient diet and the origins of agriculture. Their on-going research continuously achieves impact worldwide at all levels. Impact has been actively enhanced via the involvement of Evershed and his entire team in hundreds of public engagement activities (art/science exhibitions and festivals, personal presentations, media interviews/articles/documentaries), school and college educational outreach activities (teacher/student conferences, items/articles in the educational literature and contributions to educational films/documentaries). Critically, their `fingerprinting' methods have found application in detecting food fraud in the vegetable oil trade, protecting the human population worldwide from consuming impure corn oil for ca. 15 years to the present day. Most poignantly, when called upon, their methods were pivotal in solving a murder case for the Metropolitan Police.
Based on innovative technology invented and developed through research at the University of Southampton, sustainable pest control products by spinout company Exosect are being employed around the world to preserve the global food supply. Since 2008 its bio-control products have been newly adopted in diverse situations: by Sainsbury's in response to consumer pressure to reduce chemicals in food; by Bayer CropScience, who bought rights, in a multimillion pound deal, to a product for the protection of bee populations; by English Heritage to preserve the UK's cultural heritage. The technology has inspired a US$1m Gates Foundation grant for poverty reduction efforts in sub-Saharan Africa and raised awareness among conventional pesticide manufacturers of the environmental and economic benefits of bio-control solutions.
Development and validation of a novel supply chain model at Surrey has improved performance for fast growing companies.
Validated with an international food manufacturer, it has been applied in a different sector with similarly promising results. Plans are in place to roll out to other companies seeking fast growth. Impact:
These benefits allowed the companies to structure growing customer bases and expand new markets.