Similar case studies

REF impact found 26 Case Studies

Currently displayed text from case study:

Case Study 4: Quantitative Image Analysis – Novel Biomarkers for Clinical Trials and Diagnostics (IXICO)

Summary of the impact

A biomarker is a measurement or physical sign used as a substitute for a clinically meaningful endpoint that measures directly how a patient feels, functions, or survives. Biomarkers can be used to assess changes induced by a therapy or intervention on a clinically meaningful endpoint.

New quantitative image analysis techniques developed at Imperial College have enabled the computation of imaging biomarkers that are now widely used in clinical trials as well as for healthcare diagnostics. This case study illustrates the resulting key impacts including:

  1. The development of a spin-off company, IXICO, which has licenced the developed image analysis techniques and imaging biomarkers.
  2. The use of the image analysis techniques and imaging biomarkers in more than 40 clinical trials involving more than 10000 subject visits.
  3. The approval of imaging biomarkers by European regulators as a tool to enrich recruitment into regulated clinical trials in Alzheimer's disease (AD).

Submitting Institution

Imperial College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

UOA15-10: Boujou: special effects software for the film industry

Summary of the impact

The Boujou special effects software was developed from research carried out at the Department of Engineering Science. It enables sophisticated computer generated imagery (CGI) to be quickly and easily added to `real' film footage, facilitating the visual effects that feature so importantly in films such as Harry Potter and X-Men. The software has become an essential tool used by film-makers, TV advert producers, and video game manufacturers, and for instance played a pivotal role in helping `The Curious Case of Benjamin Button' win the 2009 Oscar for Best Visual Effects. Between 2008 and 2013, sales of Boujou totalled £1.37 million and this software boosted productivity and profitability right across the global digital entertainment industry.

Submitting Institution

University of Oxford

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Benefits to the business and medical sectors through application of geometric convexity-based methods to image and data processing

Summary of the impact

Researchers in the Department of Mathematics at Swansea University have developed novel geometric methods for image processing, feature extraction and shape interrogation. The research has delivered commercial and clinical impact in a variety of settings, ranging from new water marking techniques to improve piracy detection in the film industry, to medical research investigating the replacement of traditional CT scans with safer MR scans. The research has also delivered an automatic feature and gap detection tool that has been successfully applied to aircraft data files provided by BAE Systems. A consultancy company is exploiting the methods and a licence for the commercialisation of the technology is in process.

Submitting Institution

Swansea University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics, Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing

Stereoscopic Imaging

Summary of the impact

This case study involves the development and implementation of novel algorithms that control the mapping of depth from a scene being imaged by a camera to an image being viewed on a stereoscopic display so as to make viewing more comfortable for the human visual system. The algorithms, developed at Durham University between 2003 and 2005:

  • are influential in the implementation of software tools supplied to the games industry;
  • have reportedly been widely adopted in the 3D movie industry; and
  • are used to produce award-winning 3D science movies that have been shown around the world and which have measurable and quantifiable public impact (nationally and internationally) in terms of both significance and reach.

Submitting Institution

University of Durham

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Psychology and Cognitive Sciences: Psychology

The GMPR 3D Technologies

Summary of the impact

The Geometric Modelling and Pattern Recognition (GMPR) Group at Sheffield Hallam University (SHU) has developed and patented internationally-known line projection technologies for fast 3D scan, reconstruction and recognition. Three types of impact can be identified: (i) through our patents, we have licensed to companies in Europe and the USA; (ii) these technologies are being transferred to Small and Medium-sized Enterprises (SMEs) across Europe, through the European funded MARWIN and ADMOS projects; and (iii) social and cultural impacts are evidenced by the 3D scanning of representative items from the Museums Sheffield Metalwork Collection which have been made publicly available on the web, and through the `Man of Steel' community project where a landmark sculpture will form a gateway to South Yorkshire and the Sheffield City Region.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Communication, Cultural and Media Studies, Library and Information Management 

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

Enhanced photo and special effects processing for professional and amateur photographers

Summary of the impact

Professor Kautz and his team have developed two photo manipulation and processing methods (Exposure Fusion and local Laplacian filtering) that are used to produce well-exposed photographs with tuneable local contrast. Both are robust and consistent without requiring any per-image parameter tuning. Due to its reliability and effectiveness, Exposure Fusion is now considered the standard method for blending multiple photographs into a single well-exposed photograph, and is used by a large number of commercial and non-commercial products. Local Laplacian filtering was chosen by Adobe Systems Incorporated to be the default tool for image enhancements in Adobe Lightroom and Adobe Camera Raw. As a result, these methods are now in the hands of hundreds of thousands users, who use them to create and manipulate well-exposed digital photographs.

Submitting Institution

University College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Improving prostate cancer diagnosis and care using computer simulation and medical image registration

Summary of the impact

UCL's research has led to changes in patient care for men with prostate cancer, through the implementation of less invasive, image-directed treatment and diagnostic strategies, and clinical trials that use these techniques. The use of medical image registration software to deliver high- intensity ultrasound therapy in a targeted manner has been shown to change the treatment plan in half of the patients participating in a clinical study. New biopsy criteria are now used routinely to classify patient risk at University College Hospital, where, since 2009, clinicians have determined the treatment options for more than 741 prostate cancer patients. The scheme has been adopted, by 15 other hospitals in the UK and internationally, where it has become the recommended standard of care, and has been used to treat more than 1,200 patients.

Submitting Institution

University College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Health

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Biomedical Engineering
Medical and Health Sciences: Neurosciences

Segmentation and Watermarking of Peripheral Blood Smear Images

Summary of the impact

The key impact of this project, in the form of `proof of concept', has been by influencing the practice of medical professionals (haematologists) at the Transfusion Medicine & Immunohematology section (in the hospital wing) of the Christian Medical College (CMC) Vellore (India). This has been achieved by developing and implementing system software for segmenting (and watermarking) of the nuclei of the White Blood Cells (WBCs) of peripheral blood smear images to overcome the challenge of identifying various pathological conditions. Segmentation of medical images is a highly challenging process, especially when dealing with blood smear images, which are known to have a very complex cell structure. The project has led to a significant improvement in the work process of haematologists at CMC's hospital wing where the output of this research (software system pilot) is being used. This has had an impact on the way smear slides are digitised, archived, and includes the segmentation, analysis, and watermarking of medical images at CMC. Christian Medical College (CMC) and Hospital at Vellore is an educational and pioneering research institute and a tertiary care hospital (which is the CMC's hospital wing), located at Tamil Nadu in Southern India.

Submitting Institution

Liverpool Hope University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Health

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Neurosciences

Zappar

Summary of the impact

Research at the University of Cambridge Department of Engineering on computer vision tracking led to the creation of Extra Reality Limited in 2010, which was subsequently acquired by a new company called Zappar Limited in May 2011. Zappar employs 17 staff and had revenue of GBP612k in the financial year 2012/13, an increase of 35% on the previous year.

Over 50 different brands have used Zappar's augmented reality application across more than 300 offerings in over 17 countries to deliver entertainment-based marketing interactions from 2011 to 2013. [text removed for publication] Examples of partners include Disney, Warner Brothers and Marvel. Zappar has changed attitudes in the media sector by showing that "augmented reality is finally ready for prime time" (President, Creative Strategies Inc, Time Online, 2012).

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

UOA15-05: Imaging software for cancer diagnosis

Summary of the impact

Key advances in the earlier diagnosis of cancer, leading to better treatment and higher survival rates, have resulted from the commercialisation of unique imaging software that exploits research from the Department of Engineering Science. The software products that came from this research, Volpara™, XD and XRT are now used at major cancer centres worldwide (with approximately 1100 software installations), aiding treatment of tens of thousands of patients every year. Between 2009 and July 2013, Volpara™ scanned over 1.2 million mammograms, enabling the early detection of around 1800 cancers. The products' success has catalysed significant improvements in cancer care, and generated an estimated £9M in sales over the past two years for the spinout companies established to develop them (Matakina, based in New Zealand, and Mirada Medical, based in the UK).

Submitting Institution

University of Oxford

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

Filter Impact Case Studies

Download Impact Case Studies