Log in
Fundamental to effective treatment of diabetes is the understanding of complex mechanisms regulating the function and demise of insulin-secreting pancreatic beta-cells. Inherent limitations relating to pancreatic beta-cell supply coupled with short functional life in culture prompted the challenge to establish model clonal human beta-cells. Ulster exploited an innovative approach to first establish clonal rodent beta-cells. Further development of our novel technology resulted in the generation, patent protection, and commercialisation of world-first electrofusion-derived functional human beta-cells. Our unique and valuable beta-cell lines have been licensed to multi-national pharmaceutical companies for diabetes drug development and further commercialised by sales through ECACC (now Public Health England) to directly impact on both bio-industry and the international research community by providing a limitless supply of high quality model beta-cells for translational research and diabetes drug development.
Seven patients with avascular necrosis of the femoral head and bone cysts have been treated successfully with skeletal stem cell therapy, developed by Southampton researchers, resulting in an improved quality of life. This unique multi-disciplinary approach linking nano-bioengineering and stem cell research could revolutionise treatment for the 4,000 patients requiring surgery each year in the UK and reduce a huge financial burden on the NHS. The work has been granted three patents and the team are in discussions on development of the next generation of orthopaedic implants with industry.
Research into novel immunotherapies has given rise to a novel drug (EtxB), which is now in Phase II clinical trials, and to a profitable contract research company partnering with the pharmaceutical industry to develop their compounds. Trident Pharmaceuticals was formed around patents filed by the University of Bristol, has received investment of [text removed for publication], successfully completed Phase I trials (2011) and is in the midst of Phase IIa trials in humans with inflammatory disease (2013). KWS BioTest arose as a result of the underpinning research and experience gained from developing EtxB, and is now a leading contract research organisation working with pharmaceutical and biotechnology companies developing novel treatments for human disease. KWS has directly contributed to the development of therapies at more than 75 different companies, employs 28 people, has exported [text removed for publication] and was 2012 winner of a Biomedical iNet Award for outstanding business achievement.
Pioneering basic research into the role of oxygen free- radical damage and antioxidant micro-nutrient protection in human periodontal diseases by the Periodontal Research Group in Birmingham has led to the development and marketing of novel toothpaste formulations and new applications for other nutrient products in collaboration with global consumer healthcare companies. This work has changed thinking in the field and has had significant commercial impact in terms of changing business R&D and marketing strategies. Resultant technologies have demonstrated reductions in gingivitis and periodontitis with associated social, economic and health impacts. In addition, our research is enabling Triclosan, an antibacterial compound used widely in soaps, detergents, mouthwashes and toothpastes, to be replaced with more environmentally-friendly, natural and equally efficacious agents.
Mouse disease models provide an invaluable tool to the medical sciences, underpinning the understanding of disease mechanisms and the development of therapeutic interventions. A new cultivation protocol for deriving mouse embryonic stem (ES) cells was developed by Dr Nichols between 2006 and 2009. This has facilitated the production of ES cells from disease model mice that can be manipulated in vitro and used to establish modified transgenic mice with the required genetic profile, in a single generation. This method reduces the number of mice needed, as well as associated costs and staff time, by 90%. Dr Nichols has trained industry delegates from international transgenics companies and transgenic facility managers in the new technology. As a consequence, a minimum of 26820 fewer mice have been used in experiments, and a minimum of £536k have been saved since 2009.
Diabetes research at University of Ulster (Ulster) addresses the unmet need of industry for new and more effective commercially applicable approaches for diabetes therapy. We have generated a new class of innovative peptide therapeutics resulting in a strong portfolio of intellectual property, significant international recognition, financial investment and job creation, with commercialisation through Ulster's technology transfer company, Innovation Ulster (IUL), and the Ulster start-up company, Diabetica Ltd. Our substantial interactions with industry have resulted in the licensing and further development of our international patents on stable incretin peptides for diabetes and, through our discovery of their positive effects on cognition, for treatment of Alzheimer's disease. This work has provided industry with new and commercially viable approaches to significantly improve the lives of people with diabetes and related neurodegenerative disease.
Research by Professor Parmjit Jat (first at the Ludwig Institute for Cancer Research, then part of UCL; later at the UCL Institute of Neurology) established and applied the critically important scientific concept of conditional immortalisation to a wide variety of cell lines, enabling cells to be grown indefinitely in vitro but differentiate upon altering the growth conditions. Two companies were established in partnership with Jat to exploit this research, ReNeuron (now worth £63.5m and publicly traded on the London AIM market) and XCellSyz (now part of Lonza AG). More than 20 patents based on Professor Jat's work have been issued. Reagents based on his research have been evaluated, licensed and used by 17 companies worldwide: Amgen, Amylin, Boehringer Mannheim, Cell Genesys, Chiron, Eli Lilly, Genentech Inc., Genetics Institute, Immunex, Johnson & Johnson, Medarex, Novartis, Ortho Pharm., Pfizer Inc., Regeneron, ReNeuron, Takeda, EMD Serono, and XCellSyZ/Cambrex Bioscience/Lonza.
In 2008, Professors Martin Birchall and Anthony Hollander (University of Bristol) and a team of scientists and surgeons led from Bristol successfully created and then transplanted the first tissue-engineered trachea (windpipe), using the seriously ill patient's own stem cells. The bioengineered trachea immediately provided the patient with a normally functioning airway, thereby avoiding higher risk surgery or life-long immunosuppression. This sequence of events, which raised public interest and understanding around the world as a result of huge media coverage, acted as proof of concept for this kind of medical intervention. A new clinical technology with far-reaching implications for patients had passed a major test. This development demonstrated the potential of stem cell biology and regenerative medicine to eradicate disease as well as treat symptoms and has already led to the implantation of bioengineered tracheas in at least 14 other patients.
Neural stem cells offer enormous therapeutic potential for stroke but they require regulatory approval. Researchers at King's College London (KCL) devised a technology to immortalise stem cells, generated clinical-grade neural stem cell lines and demonstrated efficacy in an animal model of stroke. KCL research underpins the first approvals in the UK for a therapeutic stem cell product. This led to an industry-sponsored clinical trial of a stem cell therapeutic that has demonstrated vital improvement in all the first five stroke patients treated. KCL research has made a significant impact by considerably reducing the timetable for delivering potential therapies which will affect the life sciences industry and the process now in place acts as a model for other technology developments in this area.
Researchers at the University of Brighton (UoB) have developed innovative low-cost solutions to pressing global disease problems. In Haiti, rapid deployment of new wastewater technology averted further human crisis when the 2010 earthquake exposed water resources to hospital wastewaters contaminated by the cholera pathogen. In Malawi, the re-design and improved management of rural wells have provided low-income communities with safer drinking water. In Europe, new methods have identified human faecal contamination of rivers and established viral removal rates in a wastewater reuse system, enabling two water companies and two national environmental agencies to meet international standards and protect public health.