Similar case studies

REF impact found 21 Case Studies

Currently displayed text from case study:

Advances in Gamma-Ray Detection and Imaging

Summary of the impact

The University of Southampton's distinguished body of work on the design of technology for gamma-ray detection and imaging has informed new counter-terrorism practices. Technological advances arising from the research have been crucial to delivering significant benefits in the fields of homeland security and nuclear safety — the latter particularly in the wake of the 2011 Fukushima disaster. A spin-out company, Symetrica, currently employs 26 people in the UK and the USA, has a forecast turnover of more than £10 million for 2013-14 and has been recognised as an example of best practice. It is a technological leader in the field of radioactive isotope identification.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Medipix - High Energy Physics collaborators deliver technological breakthrough behind world’s most advanced X-ray detector

Summary of the impact

Medipix-based detectors are the best pixelated X-ray detectors available on the market and are commercialised by PANalytical under the brand name PIXcel. At the core of PIXcel is the Medipix2 chip, which was developed around a photon counting breakthrough conceived by the Medipix collaboration and is unique in its adaptability, high spatial resolution, high dynamic range and low noise. This product is the direct result of an exclusive license and a collaboration agreement between PANalytical and the Medipix collaboration, coordinated by CERN and comprising a further sixteen leading physics research institutes in Europe. The University of Glasgow is the only UK institution to be one of the four founding members of the Medipix1 collaboration.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing

From space science to medicine; the application of novel sensor technologies in healthcare

Summary of the impact

Space science and medicine share a fundamental requirement for radiation sensors of the highest possible sensitivity. The development of imaging detectors for major X-ray observatories such as the European XMM-Newton and NASA's Chandra provided the impetus for a broad-based, intensive programme of deliberate technology transfer from the Unit's Space Research Centre (SRC) into the life sciences and medicine. The resulting impact now extends far beyond the exploratory provision of prototype sensor technologies for biomedical researchers into the full-scale commercial exploitation of those technologies with industry partners in the UK and Europe and, in three separate cases, to early-stage patient trials. Impact is being delivered in clinical specialisms from oncology to ophthalmology; from neurotoxicology to emergency medicine. The impact delivery mechanisms — the hospital-based Diagnostics Development Unit (DDU) and the campus-based Bioimaging Unit — are themselves novel and have achieved national prominence as examples of best practice in the drive for economic return even from established blue skies research.

Submitting Institution

University of Leicester

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences

Giving Medicine a Better Image with Wafer-scale CMOS Imagers

Summary of the impact

Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]

This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.

Submitting Institution

University of Lincoln

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing

Giving Medicine a Better Image with Wafer-scale CMOS Imagers

Summary of the impact

Development of the World's first radiation-tolerant, wafer-scale (13 cm square) CMOS imager (Active Pixel Sensor) which presents exciting new potential for medical, scientific and technological imaging with much improved performance and lower life-time costs. This development fully met a Grand Challenge set by EPSRC and the imager, called Dynamite, is being exploited in on-going trials for prostate cancer radiotherapy at the Royal Marsden Hospital/ICR and for diffraction-enhanced mammography at UCL/Ninewells Hospital, Dundee, and proton therapy imaging with Wellcome Trust support. Dynamite won the IET Innovation Award for Electronics (2012). A spinout company, ISDI Ltd, was formed in 2010 to further custom CMOS imager design and provision. [text removed for publication]

This case study demonstrates both major societal (healthcare) and economic impact through making commercially available new and revolutionary medical diagnostic and therapeutic imaging technology, being delivered directly a new start-up company. It also exemplifiers the entire entrepreneurial pipeline from RC-UK Basic Technology funding to successful company creation.

Submitting Institution

University of Lincoln

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

4 Structural Science – Equipment and Software for Industry

Summary of the impact

Durham Chemistry has a long history of research in cutting edge crystallographic methods and innovative instrument design which has led to the commercialisation of scientific apparatus and software with significant sales value. Durham-developed apparatus and crystallographic software are used globally by both industry and academia. Autochem2, for example, is sold exclusively to Agilent via the spin-out company OlexSys, and hundreds of researchers rely on Durham's contributions to the Topas software pacakge. Crystallographic research for pharmaceutical and other companies, research-based consultancy, commercial analytical services and provision of international PhD+ level training schools have led to further significant impact.

Submitting Institution

University of Durham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)

Platform for image-guided treatment of arrhythmia

Summary of the impact

Atrial fibrillation (AF), a form of cardiac rhythm disturbance, significantly increases risk of stroke, heart failure and sudden death. The Division of Imaging Sciences and Biomedical Engineering at King's College London and Philips Healthcare collaborated to develop a platform for guiding cardiovascular catheterisation procedures in patients with AF. The EP Navigator is a commercial, clinical product that integrates pre-acquired magnetic resonance and computer tomography images with real-time X-ray fluoroscopy. This enhances visualisation, thereby reducing procedure time and the patient's exposure to radiation. The EP Navigator is used in around 350 out of 2,000 centres worldwide that carry out ablation therapies for cardiac arrhythmias, despite strong competition.

Submitting Institution

King's College London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Neurosciences

Commercialised advances in computer algebra

Summary of the impact

Maple is a major commercial computer algebra system, with millions of users worldwide. It is used in many industrial applications, covering diverse sectors including automotive, aerospace and defense, electronics, energy, financial services, consumer products, entertainment, basic research and teaching. Research by Davenport's team at Bath, in collaboration with the University of Western Ontario, has led to algorithmic advances that have been incorporated in recent releases of Maple. These advances mean that Maple can solve systems of equations it could not previously solve, give completely accurate solutions to systems it could previously only approximate, and can present the solutions to the user in an improved manner.

As well as including code written at Bath directly in Maple, MapleSoft have deployed a Senior Developer to integrate the work of Davenport's team closely into the Maple system. These solution algorithms are now transparently available to all users of Maple. MapleSoft themselves have used the solution algorithms in an industrial application in a consultancy project with a major Japanese automotive manufacturer.

Submitting Institution

University of Bath

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics

X-ray tomography for airport security

Summary of the impact

RTT (Real Time Tomography) scanning systems for airport baggage are becoming increasingly important due to growing air traffic and greater security concerns. Prior to our research, Rapiscan, a leading producer of baggage scanners, had been unable to make full use of the hardware in their latest generation of scanner prototypes. Our novel theory and image reconstruction algorithms are now a core part of a commercially successful 3D scanner that is significantly faster and more accurate than previous generations. The two models, RTT80 and large RTT110, have been approved by regulatory authorities and have already been field trialled at Manchester Airport and deployed at Seattle airport, with further US$20m orders placed.

The research and impact described herein was flagged in the citation for the UoM's 2013 Queen's Anniversary Prize for Higher and Further Education for its work in imaging techniques to support advanced materials and manufacturing.

Submitting Institution

University of Manchester

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

The Centre for Electronic Imaging, industrially sponsored research benefiting the UK economy

Summary of the impact

Professor Holland's group, the Centre for Electronic Imaging (CEI), has a long-established collaboration with UK-based imaging specialist e2v that has enabled the company to grow its business in international space missions and increase competitiveness. The CEI has helped develop e2v's understanding of the processes at work in imaging sensors, and improved image sensor designs and test methodologies. CEI has also studied space radiation damage on the sensors, trained more than 30 engineers in testing of e2v products, and was instrumental in the company's successful £3.8m Regional Growth Fund award in 2012 — funding that will create around 100 jobs by 2016.

Submitting Institution

Open University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies