Log in
The Geometric Modelling and Pattern Recognition (GMPR) Group at Sheffield Hallam University (SHU) has developed and patented internationally-known line projection technologies for fast 3D scan, reconstruction and recognition. Three types of impact can be identified: (i) through our patents, we have licensed to companies in Europe and the USA; (ii) these technologies are being transferred to Small and Medium-sized Enterprises (SMEs) across Europe, through the European funded MARWIN and ADMOS projects; and (iii) social and cultural impacts are evidenced by the 3D scanning of representative items from the Museums Sheffield Metalwork Collection which have been made publicly available on the web, and through the `Man of Steel' community project where a landmark sculpture will form a gateway to South Yorkshire and the Sheffield City Region.
The Boujou special effects software was developed from research carried out at the Department of Engineering Science. It enables sophisticated computer generated imagery (CGI) to be quickly and easily added to `real' film footage, facilitating the visual effects that feature so importantly in films such as Harry Potter and X-Men. The software has become an essential tool used by film-makers, TV advert producers, and video game manufacturers, and for instance played a pivotal role in helping `The Curious Case of Benjamin Button' win the 2009 Oscar for Best Visual Effects. Between 2008 and 2013, sales of Boujou totalled £1.37 million and this software boosted productivity and profitability right across the global digital entertainment industry.
Research at the University of Cambridge Department of Engineering (DoEng) since 1997 created methods for reconstructing a three-dimensional (3D) model of an object from a single two-dimensional photograph. Metail, a company founded in 2008, sponsored further research at the DoEng and commercialised the results in an online fashion retailing application. Metail enables customers to select an item of clothing and see how they would look wearing it from a variety of angles, having entered just one photograph of themselves and a few basic body measurements. Metail attracted over GBP3.5M investment. Its application is used by Shop Direct, Tesco, Warehouse, Zalando and Dafiti. Sales data shows that the Metail application increases the propensity of customers to buy and reduces the proportion of goods returned.
UCL's pioneering use of 3D body surface scanning and national anthropometric surveys has had impact in the fashion industry and healthcare. In 2008, a UCL spinout, Sizemic, was founded to sell clothing size charts and fit mannequins based on the UK survey data, helping manufacturers and retailers improve the fit of their clothing, and reduce their product development times and costs. Sizemic now has 10 employees and a turnover of £1m. The research also led to other national sizing surveys, including in Germany (2008/9), Thailand (2009/10) and Mexico (2010), with results used for product development. In 2009, UCL built a prototype 3D-healthcare system for GPs and established a company, ShapeDynamics, to support the platform. The software is being tested at a private healthcare practice in London. Another UCL spinout, Bodymetrics, has commercialised body scanners for use as a clothes-fitting aid in stores.
Research at the University of Cambridge Department of Engineering on computer vision tracking led to the creation of Extra Reality Limited in 2010, which was subsequently acquired by a new company called Zappar Limited in May 2011. Zappar employs 17 staff and had revenue of GBP612k in the financial year 2012/13, an increase of 35% on the previous year.
Over 50 different brands have used Zappar's augmented reality application across more than 300 offerings in over 17 countries to deliver entertainment-based marketing interactions from 2011 to 2013. [text removed for publication] Examples of partners include Disney, Warner Brothers and Marvel. Zappar has changed attitudes in the media sector by showing that "augmented reality is finally ready for prime time" (President, Creative Strategies Inc, Time Online, 2012).
HWUCS Texture Laboratory research since 1995 has developed techniques to capture 3D surfaces via stereo scanning, resulting in capability for fast, accurate capture in a way that supports realistic rendering. In 2007 the Texture Lab installed its texture capture system at IKEA, Sweden. Since then it has been used continually to amass a digital library of over 5,000 materials for generating sales imagery, and is behind 30% of room-set and 75-80% of single product shots in ~1.5Bn IKEA catalogues printed 2008--2013, in addition to online content. Meanwhile IKEA's r 3D graphics team has grown from 3 to 50.
In the late 1990s, a significant barrier to the adoption of virtual reality software was the expense of manually creating models of real-world scenes. To address this, between 1998 and 2004, the ICARUS software system was developed, which enabled the creation of structured, 3D geometric models from a sequence of images or video. The system also pioneered improved methods of camera tracking. ICARUS was subsequently licensed and developed commercially, and became the foundation for video and film post-production products that are used worldwide in the film (e.g. Universal Pictures, Warner Bros, Paramount Pictures) and television (e.g. BBC) industries, underpinning a company with an annual turnover in excess of £1m.
A permanent museum display has been set up at House for an Art Lover, Bellahouston Park, Glasgow as a direct result of the AHRC-funded "British Empire Exhibition" project undertaken at the Digital Design Studio. The display includes workstations with project outputs such as 3D interactive virtual models of the non-extant architecture of the 1938 Exhibition (which itself was situated in Bellahouston Park), large format images of the architecture, interviews and interpretation, the full digitised project archive, and a selection of the physical project archive materials (a collection which was significantly enhanced by multiple donations from members of the public thanks to engaging and effective project publicity). The display has contributed intellectually, artistically, and economically to the House's assets.
This case study involves the development and implementation of novel algorithms that control the mapping of depth from a scene being imaged by a camera to an image being viewed on a stereoscopic display so as to make viewing more comfortable for the human visual system. The algorithms, developed at Durham University between 2003 and 2005:
The Centre for Fine Print Research (CFPR) invented a novel method of 3D printing digitally generated ceramics which has enabled different manufacturing companies to improve their product development cycle, processes and economic performance. The method has wider applicability in making rapid model development tools or unique ways of creating large surface topographies that were previously impossible.
As a result of this industrial impact, CFPR has been invited to work with the AHRC and the Technology Strategy Board to influence government policy through the wider dissemination of innovative practice integrating artistic experimentation and industrial methods.