Log in
The impacts from over 20 years bioenergy research at Aston University, have been through influence and support for businesses to generate and use environmentally advantageous sources of power, fuels and chemicals. Pilot scale systems that exploit pyrolysis and gasification of biomass residues and renewable feed-stocks are operational. The EU, UK and local governments have developed policies with the Unit's advice on the potential of bioenergy for power generation and waste reduction. Technical and business advice have been provided, a new company formed, investments made in new business directions by SMEs and large multinational companies. This has generated new employment opportunities in consultancy, design and manufacture of systems, social and environmental benefits, along with greater public awareness.
BEAA research has impacted positively on commerce in brewing and biotechnology companies worldwide through continuous collaboration with Aber Instruments, an AU spin-out company formed to commercialise university research. Aber Instruments has supplied over 1000 fermentation monitoring systems world-wide for the on-line measurement of viable biomass concentration, providing improvements in speed and accuracy over previous off-line, culture or stain-based procedures. On-line, real-time monitoring of viability during fermentation reduces costs and improves product quality, leading to practitioners in large breweries including Anheuser Busch, SABMiller, Inbev, Coors, Diageo, Heineken, Suntory and San Miguel adopting the Yeast Monitor as part of their standard operating procedures. The new Futura instrument, which utilises the same technology developed from BEAA research, was launched in 2009 and is now used by major biotechnology companies including Genetech, Novo, Biogen Idec, GlaxoSmithKline, Centocor, Sandoz, Eli Lilly and Genzyme to monitor biomass in a much wider range of fermentations.
BEAA research on high sugar grasses (HSG's) led to the breeding of HSG varieties that have had a significant impact on the contribution of grassland to livestock feeding across the UK. Their impact on the economy, commerce and the production of livestock products has been significant in the UK and increasingly in other countries. HSG varieties currently account for over 28% of the perennial ryegrass seed sales in the UK, with over 150,000 ha sown in the UK alone of these varieties since 2008, as their positive benefit on the economics of livestock production from grass and environmental benefit through reduced N pollution from livestock production is recognised.
Based on innovative technology invented and developed through research at the University of Southampton, sustainable pest control products by spinout company Exosect are being employed around the world to preserve the global food supply. Since 2008 its bio-control products have been newly adopted in diverse situations: by Sainsbury's in response to consumer pressure to reduce chemicals in food; by Bayer CropScience, who bought rights, in a multimillion pound deal, to a product for the protection of bee populations; by English Heritage to preserve the UK's cultural heritage. The technology has inspired a US$1m Gates Foundation grant for poverty reduction efforts in sub-Saharan Africa and raised awareness among conventional pesticide manufacturers of the environmental and economic benefits of bio-control solutions.
The mapping and monitoring of land cover, habitats and forest structure through satellite-based observation by government and commercial organisations around the world has been enhanced by data analysis techniques and tools developed by the Earth Observation and Ecosystem Dynamics (EOED) Laboratory at Aberystwyth University (AU). This has allowed new commercial services to be provided and has change professional working practices. The key impacts include (i) improved knowledge and information about land cover and environmental change in forest and brigalow ecosystems in Australia, supporting effective management strategies; (ii) the completion of a comprehensive digital map of habitats in Wales to inform policy-making; and (iii) the increased capacity of the global remote sensing community in forest characterisation using open source software developed by AU.
Oats are recognised as a healthy grain reducing the risk of coronary heart disease and as a valuable grain for livestock feed. Research within BEAA has provided the genetic, physiological and agronomic knowledge that underpins the breeding of high yielding husked and naked oat varieties that meets the needs of end-users in the human food and livestock sectors. BEAA bred oat varieties account for approximately 65% of the UK market and have a significant impact on health and welfare, the economy and on production and support the expanding instant oat breakfast market sector that alone is worth £160million per annum.
In 2012, it is estimated the $145bn was invested in solar photovoltaic technology. Dye-Sensitized Solar Cells (DSC) are expected to play an increasing role in renewable energy generation over the next decade and beyond, but several practical issues need to be overcome to facilitate large-scale economic production. Fundamental research at Bangor has laid the ground for collaborative work with industry which has overcome several of the key production constraints in their manufacture, increasing production speed and efficiency and substantially reducing costs. As a result, we have developed a Technology Roadmap with a major multinational partner (TATA) which has led to significant investment in plant and to the production of pilot products in the form of photovoltaic roofs, currently undergoing outdoor testing.
Economic impact is claimed through the growth of the biopharmaceutical spin-out company Q Chip Ltd. During the REF period, this has created 19 new jobs, £7.5M investment, a new Dutch subsidiary (Q Chip BV), and staged-payment, six figure contract sales to four major international pharmaceutical companies.
Q Chip has generated over £928K in contract sales from the pharmaceutical industry from 2008-2012, with further sales of over £1M projected in 2013-14.
Originally established by Professor David Barrow in 2003 from his micro technology research, Q Chip has developed new processes and miniaturised equipment to encapsulate materials, including drugs, within uniform polymeric microspheres as injectable therapeutics.
This case study describes interdisciplinary impacts developed from research of the Sustainable Energy theme. They examine conversion of energy from alternative sources; from power generation using pyrolysis or biomass burners to energy harvesting of waste heat from electronic components. In all cases the aim is clear: to develop systems that make sustainable energy production a reality. This has important impacts in advancing efficiency and reliability in renewable energy technologies. Importantly, through a number of externally funded projects, this group's members have directly influenced local, national and international companies and governmental bodies. In some cases influencing decisions and having direct impact on efficiency, value from investment and even on balance sheets. In summary, they have conducted numerous energy audits, produced a minimum of 6 best practice case studies, influenced the renewable strategies of at least 52 countries, regions or industries and are recognised as the centre for biomass fuel quality assessment.
Platinum Group Elements (PGE) are critical strategic metals because of their unrivalled applications in catalysts, fuel cells and electronics and cancer therapies. Research and analytical methods developed at Cardiff have impacted on exploration for new PGE deposits, and more efficient processing of PGE ores by international mining companies. A key milestone between 2009 and 2012 was the discovery of a 3 billion year old giant impact crater in West Greenland. This discovery is of major economic significance because all craters previously found in this size class are associated with multi-billion dollar mineral and/or hydrocarbon resources. It led to an intellectual property transaction worth CDN$ 2.1 million and discovery of nickel and PGE deposits in Greenland by North American Nickel Incorporated.