Similar case studies

REF impact found 19 Case Studies

Currently displayed text from case study:

Enhanced photo and special effects processing for professional and amateur photographers

Summary of the impact

Professor Kautz and his team have developed two photo manipulation and processing methods (Exposure Fusion and local Laplacian filtering) that are used to produce well-exposed photographs with tuneable local contrast. Both are robust and consistent without requiring any per-image parameter tuning. Due to its reliability and effectiveness, Exposure Fusion is now considered the standard method for blending multiple photographs into a single well-exposed photograph, and is used by a large number of commercial and non-commercial products. Local Laplacian filtering was chosen by Adobe Systems Incorporated to be the default tool for image enhancements in Adobe Lightroom and Adobe Camera Raw. As a result, these methods are now in the hands of hundreds of thousands users, who use them to create and manipulate well-exposed digital photographs.

Submitting Institution

University College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

UOA15-05: Imaging software for cancer diagnosis

Summary of the impact

Key advances in the earlier diagnosis of cancer, leading to better treatment and higher survival rates, have resulted from the commercialisation of unique imaging software that exploits research from the Department of Engineering Science. The software products that came from this research, Volpara™, XD and XRT are now used at major cancer centres worldwide (with approximately 1100 software installations), aiding treatment of tens of thousands of patients every year. Between 2009 and July 2013, Volpara™ scanned over 1.2 million mammograms, enabling the early detection of around 1800 cancers. The products' success has catalysed significant improvements in cancer care, and generated an estimated £9M in sales over the past two years for the spinout companies established to develop them (Matakina, based in New Zealand, and Mirada Medical, based in the UK).

Submitting Institution

University of Oxford

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

Improving prostate cancer diagnosis and care using computer simulation and medical image registration

Summary of the impact

UCL's research has led to changes in patient care for men with prostate cancer, through the implementation of less invasive, image-directed treatment and diagnostic strategies, and clinical trials that use these techniques. The use of medical image registration software to deliver high- intensity ultrasound therapy in a targeted manner has been shown to change the treatment plan in half of the patients participating in a clinical study. New biopsy criteria are now used routinely to classify patient risk at University College Hospital, where, since 2009, clinicians have determined the treatment options for more than 741 prostate cancer patients. The scheme has been adopted, by 15 other hospitals in the UK and internationally, where it has become the recommended standard of care, and has been used to treat more than 1,200 patients.

Submitting Institution

University College London

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Health

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Biomedical Engineering
Medical and Health Sciences: Neurosciences

Segmentation and Watermarking of Peripheral Blood Smear Images

Summary of the impact

The key impact of this project, in the form of `proof of concept', has been by influencing the practice of medical professionals (haematologists) at the Transfusion Medicine & Immunohematology section (in the hospital wing) of the Christian Medical College (CMC) Vellore (India). This has been achieved by developing and implementing system software for segmenting (and watermarking) of the nuclei of the White Blood Cells (WBCs) of peripheral blood smear images to overcome the challenge of identifying various pathological conditions. Segmentation of medical images is a highly challenging process, especially when dealing with blood smear images, which are known to have a very complex cell structure. The project has led to a significant improvement in the work process of haematologists at CMC's hospital wing where the output of this research (software system pilot) is being used. This has had an impact on the way smear slides are digitised, archived, and includes the segmentation, analysis, and watermarking of medical images at CMC. Christian Medical College (CMC) and Hospital at Vellore is an educational and pioneering research institute and a tertiary care hospital (which is the CMC's hospital wing), located at Tamil Nadu in Southern India.

Submitting Institution

Liverpool Hope University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Health

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Neurosciences

Phase Unwrapping Software

Summary of the impact

Phase unwrapping is an essential algorithmic step in any measurement system or sensor that seeks to determine continuous phase. Instances of such devices are widespread: e.g. image reconstruction in magnetic resonance imaging (MRI), synthetic aperture radar (SAR) by satellite systems, analysis of seismic data in geophysics and optical instrumentation, to name but a few. Without successfully solving the phase unwrapping problem these instruments cannot function.

The topic is well developed and competition among algorithms is fierce. In 2012 alone, some 235 papers, most of which were describing potential new algorithms, were published in the area. But the continuing need for high-speed, automated and robust unwrapping algorithms poses a major limitation on the employability of phase measuring systems.

Working originally within the context of structured light 3D measurement systems, our research has developed new phase image unwrapping algorithms that constitute significance advances in speed, automation and robustness. The work has led to adoption by industry, as well as use in commercial and government research centres around the globe. Our approach since 2010 has been to make these algorithms freely available to end users. Third parties have gone on to translate our algorithms into other languages, widely used numerical software libraries have incorporated the algorithms and there are high profile industrial users.

Submitting Institution

Liverpool John Moores University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Clinical Sciences

SIAscopy for rapid noninvasive in-vivo quantification and assessment of skin histology in dermatology and cosmetics

Summary of the impact

SIAscopy is an image analysis method using the physics of image formation. It non-invasively provides near-instant quantitative maps of the key histological components of the skin. The scientific underpinnings were developed by Prof. Claridge's group, patented, and commercialised via a spin-off company Astron Clinica. SIAscopy was incorporated into medical imaging products which improved accuracy of general practitioners in diagnosis of melanoma, a skin cancer, whilst delivering higher cost-effectiveness than best clinical practice. Developed primarily for cancer diagnosis, SIAscopy also found uses in the cosmetics industry. In 2011 the current IPR owner, MedX, estimated the US market opportunity for the technology to be around $1 Billion.

Submitting Institution

University of Birmingham

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

Robust and Accurate 2D-3D Image Registration

Summary of the impact

A collaborative research project between the Division of Imaging Sciences and Biomedical Engineering, King's College London (KCL) and Philips Healthcare has devised methods to register (i.e. align or match) pre-operative 3D computed tomography (CT) images to intraoperative 2D X-ray images, resulting in more accurate and robust registration/alignment measures. The measures can be applied directly to images from standard X-ray machines, allowing for rapid translation to guide surgical procedures and radiotherapy. These measures (or close variants) are used routinely in commercial products by Accuray, Philips Healthcare and Cydar Ltd (KCL spinout), benefitting the care of hundreds of patients worldwide, every day.

Submitting Institution

King's College London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

UOA15-10: Boujou: special effects software for the film industry

Summary of the impact

The Boujou special effects software was developed from research carried out at the Department of Engineering Science. It enables sophisticated computer generated imagery (CGI) to be quickly and easily added to `real' film footage, facilitating the visual effects that feature so importantly in films such as Harry Potter and X-Men. The software has become an essential tool used by film-makers, TV advert producers, and video game manufacturers, and for instance played a pivotal role in helping `The Curious Case of Benjamin Button' win the 2009 Oscar for Best Visual Effects. Between 2008 and 2013, sales of Boujou totalled £1.37 million and this software boosted productivity and profitability right across the global digital entertainment industry.

Submitting Institution

University of Oxford

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Stereoscopic Imaging

Summary of the impact

This case study involves the development and implementation of novel algorithms that control the mapping of depth from a scene being imaged by a camera to an image being viewed on a stereoscopic display so as to make viewing more comfortable for the human visual system. The algorithms, developed at Durham University between 2003 and 2005:

  • are influential in the implementation of software tools supplied to the games industry;
  • have reportedly been widely adopted in the 3D movie industry; and
  • are used to produce award-winning 3D science movies that have been shown around the world and which have measurable and quantifiable public impact (nationally and internationally) in terms of both significance and reach.

Submitting Institution

University of Durham

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Psychology and Cognitive Sciences: Psychology

Zappar

Summary of the impact

Research at the University of Cambridge Department of Engineering on computer vision tracking led to the creation of Extra Reality Limited in 2010, which was subsequently acquired by a new company called Zappar Limited in May 2011. Zappar employs 17 staff and had revenue of GBP612k in the financial year 2012/13, an increase of 35% on the previous year.

Over 50 different brands have used Zappar's augmented reality application across more than 300 offerings in over 17 countries to deliver entertainment-based marketing interactions from 2011 to 2013. [text removed for publication] Examples of partners include Disney, Warner Brothers and Marvel. Zappar has changed attitudes in the media sector by showing that "augmented reality is finally ready for prime time" (President, Creative Strategies Inc, Time Online, 2012).

Submitting Institution

University of Cambridge

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

Filter Impact Case Studies

Download Impact Case Studies