Log in
Today's global telecom systems are powered by technology developed at the University of Glasgow. This technology has been utilised, endorsed and developed by a series of internationally successful companies, facilitating multimillion pound investment from across Europe and the USA for the companies.
Gemfire Europe acquired the University of Glasgow IP and technology and between 2008 and 2012 launched a range of `green' products with reduced power consumption. The company's revenues reached $12m annually and in 2013, Gemfire was one of the world's top five planar lightwave circuit companies. Gemfire was bought by Kaiam, one of the world's market-leading optical networking companies in April 2013, stimulating further innovation and investment in the production of high-speed components for the global data networking market.
The Surrey Ion Beam Centre (based at the University of Surrey) pioneered the field of ion beam applications and is regarded as world leading, having initiated a significant number of high profile research activities for which it received recognition through the Queen's Anniversary prize in 2002. It works actively with industry, developing bespoke processes and services, particularly for the photonics industry, ultimately generating millions of pounds for the UK economy. It also serves as a European Centre for doctoral training.
Research on high-voltage power devices by the University of Cambridge Department of Engineering (DoEng) was commercialised by its spin-off company, Cambridge Semiconductor Limited (CamSemi), which, in the REF period, has:
CamSemi chips are more efficient than traditional linear power supplies. The CamSemi chips that were produced before the end of the REF period are estimated to save of the order of 100GWh of electricity and 50,000 tonnes of CO2 emissions per year in total.
Impact: Economic gains
PHYESTA research has led to the setting up of a company now known as ForthDD. Since 2008 it has increased its annual revenue by more than 25% to around US $5M, and its global workforce from 25 to 35. It has released new products directly underpinned by PHYESTA research as recently as October 2012.
Significance:
A consortium involving PHYESTA staff in collaboration with Edinburgh's School of Engineering and five industrial partners realised the world's first high-resolution ferroelectric liquid crystal over silicon (FLCOS) microdisplay. This digital display attracted investment from the UK, Taiwan, and USA of over $40m, and was taken forward to production by MicroPix, MicroVue, and Forth Dimension Displays.
Reach:
ForthDD now has offices in Valencia, USA, and Berlin, Germany. The company designs, develops and manufactures single chip microdisplays used in the demanding near to eye (NTE) training and simulation systems, HD video camera viewfinders, medical imaging systems and virtual reality and head-mounted displays.
Beneficiaries:
ForthDD, its customers and business partners (e.g. in the medical imaging sector).
Attribution: This work was led within PHYESTA by Professor David Vass involving PHYESTA and done in collaboration with Edinburgh's School of Engineering.
The Geometric Modelling and Pattern Recognition (GMPR) Group at Sheffield Hallam University (SHU) has developed and patented internationally-known line projection technologies for fast 3D scan, reconstruction and recognition. Three types of impact can be identified: (i) through our patents, we have licensed to companies in Europe and the USA; (ii) these technologies are being transferred to Small and Medium-sized Enterprises (SMEs) across Europe, through the European funded MARWIN and ADMOS projects; and (iii) social and cultural impacts are evidenced by the 3D scanning of representative items from the Museums Sheffield Metalwork Collection which have been made publicly available on the web, and through the `Man of Steel' community project where a landmark sculpture will form a gateway to South Yorkshire and the Sheffield City Region.
The commercialisation of Quantum Cascade Lasers (QCL) and the associated novel fabrication processes developed at the University of Glasgow has provided Compound Semiconductor Technologies Global Ltd (CSTG) with a new foundry product supplying quantum cascade lasers for gas sensing, safety and security, and military applications. This resulted in 40% turnover growth from 2010-2012 and the company is now recognised as a global leader in QCLs and their fabrication. Based on University of Glasgow research, the company has created a manufacturing toolbox for the production of a wide variety of QCL chip designs. CSTG has also achieved a world first, manufacturing QCLs for systems that detect explosives at a safe distance and can counter heat-seeking missile attacks on aircraft.
Impact: Commerce and professional services; the development of Optical Projection Tomography (OPT) — a technique for three-dimensional (3D) optical microscopy.
Significance: A step-change in scientific imaging; novel equipment and training services for imaging laboratories, offering a new standard in 3D microscopy. Over £2M in sales for the MRC.
Beneficiaries: Scientific institutions and imaging facilities, commerce.
Attribution: OPT was developed, by Sharpe, Baldock and Davidson, and commercialised at the MRC Human Genetics Unit, UoE.
Reach: World-wide: OPT instruments are used in Europe, America, Asia and Australia; chapters on OPT can be found in major microscopy textbooks.
An advanced plasma source based on novel engineering has been developed and proven in conjunction with Thin Film Solutions Ltd (TFSL). This source is retrofittable to existing electron- beam deposition systems and significantly improves the properties of thin films and advanced optical filters. TFSL has produced commercial products based on this source and has achieved sales to date of £2.3 million (letter from CEO of TFSL provided) as the new technology has been widely adopted in the optical filter industry.
This case study describes the invention, development and subsequent commercial application of the floating low-energy ion gun (FLIG), a key enabling technology for high-resolution depth profiling, in particular of semiconductor devices. Following its invention at the University of Warwick, the FLIG was commercialised and now plays an important role in the semiconductor industry as a key analytical instrument. Intel and its competitors have used the FLIG in developing specific technologies, such as the PentiumTM, XeonfTM and CoreTM i7 processors. Its impact extends beyond the electronics industry to consumers worldwide since the FLIG has played a key role in the development of multicore processors for personal computers, intense low-energy lighting for automotive and civil engineering, mobile telecommunications technology, and many other areas of advanced electronic, and other material, technologies. This invention has also led directly to an ISO standard for depth resolution.
A facility for precision diamond machining of optical components arose from research at Durham University to produce instruments for large telescopes, including NASA's James Webb Space telescope. This now provides a specialist service to industry, with contracts worth over £2.0M from >20 companies over the past 5 years. The users span applications including ophthalmics, automotive optics, microstructures for backlit displays and IR optics. An emerging application is the use of high precision machine metal moulds to reproduce ophthalmic lenses for spectacles. Examples include PixelOptics (USA) who make high-end electronically corrective eyewear, which has won several ophthalmic industry R&D awards, and Eyejusters (UK), which employs complex surface slide lens technology to provide low cost spectacles aimed at improving the lives of people in the developing world.